EXPLICIT CONSTRUCTIONS OF CODE LOOPS AS
CENTRALLY TWISTED PRODUCTS

TIM HSU

ABSTRACT. Code loops are certain Moufang loop extensions of doubly even
binary codes which are useful in finite group theory (e.g., Conway’s construc-
tion of the Monster). We give several methods for explicitly constructing code
loops as centrally twisted products. More specifically, after establishing some
preliminary examples, we show how to use decompositions of codes to build
code loops out of more familiar pieces, such as abelian groups, extraspecial
groups, or the octonion loop. In particular, we use Turyn’s construction of the
Golay code to give a simple explicit construction of the Parker loop, one which
may have applications to the study of the Monster.

1. INTRODUCTION

The “remarkable Moufang loop” discovered by R. A. Parker first appeared in
print when it played a key role in Conway’s construction of the Fischer-Griess Mon-
ster group [6]. The first published proof of the existence of the Parker loop, or more
generally, of the class of Moufang loops called code loops, was subsequently given
by Griess [10], who went on to explore other constructions of nonsplit extensions
using Moufang loops [11, 12, 13]. For other work arising from code loops, see, for
instance, Chein and Goodaire [5], Johnson [15], and Richardson [19].

When working with a code loop €, for many purposes, it is sufficient to use only
the definition of € as an extension of a doubly even code (Definition 2.4, below).
However, for very specific calculations, such as calculations inside the Griess alge-
bra for the Monster (as constructed by Conway [6]), it may be necessary to have
an explicit description of multiplication in €. Such a description is given implicitly
in the existence proof by Griess [10], and more explicitly by Conway and Sloane [8,
Ch. 29, App. 2]; however, both of these descriptions are built up inductively over a
basis, and therefore require either working with the code in terms of a basis decom-
position, or constructing a lookup table. More practically, Kitazume [16] gives a
description of multiplication in code loops over codes containing subcodes isomor-
phic to even codes over Fy (e.g., the hexacode inside the Golay code). However,
Kitazume’s construction is only useful in this circumstance; furthermore, even when
the construction is applicable, an ad hoc step is needed to complete the construc-
tion each time, and the resulting multiplication procedure still seems somewhat
involved.

In this paper, we use our previous work on code loops (or more generally, “small
Frattini Moufang loops”) [14] to give simple and practical explicit constructions
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for many interesting code loops. Specifically, we use the centrally twisted product
of sub-code loops to construct code loops from smaller associative (or at least
familar) pieces. We begin in Section 2 by summarizing the necessary notation,
definitions, and previous results. In Section 3, we discuss the structure of some of
the simpler and smaller pieces which we will use to construct larger code loops. We
then use these pieces to analyze our main example, the Parker loop, in Section 4,
paying special attention both to the “Turyn” structure of the Parker loop, and to
issues of practical implementation. Finally, Section 5 describes a centrally twisted
product decomposition which may be used to construct any code loop, though not
necessarily in a convenient fashion.

Remark 1.1. By establishing these methods for explicit constructions of code
loops, we hope not only to make computation more efficient in code loops and code
loop-related objects (e.g., the Monster and similarly constructed sporadic groups),
but also to illuminate the way in which the structure of a doubly even code is
reflected in its code loop. In particular, we hope that the Turyn-type decomposi-
tion of the Parker loop provided here may eventually play a role in a Turyn-type
decomposition of the Monster itself (an idea suggested by a lecture of S. Smith).

2. DOUBLY EVEN CODES, CODE LOOPS, AND CENTRALLY TWISTED PRODUCTS

Notation. In this paper, we use the usual additive notation for finite fields and
vector spaces, instead of the multiplicative notation often used in finite group theory
papers (e.g., in Conway [6] or in [14]). Let V' and W be subspaces of F};. We use
V + W to denote the space spanned by V' and W, and call this the sum of V' and
W, even when V and W are linearly independent. We reserve the symbol V & W,
and the term direct sum, for the case when V' and W have no nonzero coordinates
in common.

We consider a vector v = (v;) € F§ to be a subset of {1,...,n} by associating
v with the set of all ¢ € {1,...,n} such that v; = 1. In this notation, u + v is the
symmetric difference of the associated sets, and |u| (resp. |[u Nv|, [lu N v N w|) is the
number of coordinates which are nonzero in u (resp. both u and v, all of u, v, and
w). |u| is called the weight of u.

We write the group of order 2 multiplicatively, with elements {£1}.

If a,b,c,... are elements of a vector space, loop, or group, {(a,b,c,...) denotes
the object generated by a,b,c,....

(n, s) will sometimes be used to denote the greatest common divisor of the inte-
gers n and s.

We recall the basic definitions of code loops (Definitions 2.1-2.4).

Definition 2.1. A doubly even binary code of length n and dimension k is a sub-
space C of dimension k in F7 such that |¢| = 0 (mod 4) for all ¢ € C. The vectors
of C' are also called codewords. If a nonzero codeword of C' with smallest possible
weight has weight d, we say that C is an [n, k, d] code.

Let Z be the group of order 2. Given any doubly even code C, we define the
functions 0 : C - Z, x:CxC = Z,anda: CxC xC — Z by

(2.1) o(c) = (=1)ll/4
(2.2) x(c,d) = (_1)\cmd|/2
(2.3) a(e,d,e) = (_1)\60dﬁe|’
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for all ¢,d,e € C.

Clearly x and « are symmetric in all variables. Also, x and « are symplectic;
that is,

(2.4) x(c,c) = +1

(2.5) a(e, ¢, d) = +1.
Furthermore, since |c + d| = |c| + |d| — 2 |cNd]|,

(2.6) o(c+d) =o(c)o(d)x(c,d)

(2.7 x(c+d,e) = x(c,e)x(d,e)alc,d, e)
(2.8) alc+d,e, f) = alc e, fald,e, f).

In other words, o, x, and « are related by polarization.

Definition 2.2. A loop is a set L with a binary operation (written as juxtaposition)
and an element 1 € L such that for all @ € L, the maps z — za and z — az are
bijections from L to itself, and 1la = al = a. A Moufang loop is a loop L such that
(zy)(zz) = z((y2)x) for all z,y,z € L.

We define Moufang loops only for the sake of completeness, since we will not
use any of their properties directly. For basic facts about (Moufang) loops, see
Bruck [4] and Pflugfelder [18].

Definition 2.3. Let L be aloop. For z,y, z € L, the commutator (resp. associator)
[x,y] (resp. [z,y, 2]) is defined to be the element of L such that zy = (yz)[z, y] (resp.
(zy)z = (z(y2))[2,y, 2])-

We use the definition of code loop from Griess [11].

Definition 2.4. Let C be a doubly even code. We say that a loop C is a code loop
of C if:

1. Chas a central subgroup Z (i.e., a subloop Z < €such that [z,7] = [2,7,6] =1
forall z € Z,~,d € @) of order 2 such that €/Z = C, as an elementary abelian
2-group. (Note that if @ is the resulting natural homomorphism from € to C,
®(y) = ¢, and ®(§) = d, then ®(yd) =c+d.)

2. For all v,d,€ € C with images ¢,d,e € C mod Z, we have

(2.9) 7 = o(c)
(2.10) [v,0] = x(c, d)
(2.11) [v, 9, €] = alc,d,e).

Note that (2.11) allows us to associate terms in a code loop as long as we apply
the correct error term of 1. We leave it as an exercise for the reader to use this
idea and the (skew-)symmetric and multilinear properties of a to verify that code
loops are Moufang. Many other identities may be similarly computed; for instance,
we have

(2.12) ~v(d€) = §(ve) - x(c,d) and
(2.13) (v0)e = (ve)d - x(d, e).
We come to the following result of Griess [10] (see also [14]).

Theorem 2.5. The code loop of a doubly even code exists and is unique up to
isomorphism. O
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We next quote Definition 2.6 and Theorem 2.7 from [14], in a customized form.
(Note that similar constructions appear in Johnson [15] and Kitazume [16].)

Definition 2.6. Let D and E be subcodes of a doubly even code C, and let D
and € be the code loops of D and FE, respectively. The binary operation on the set
D x € given by

(2.14) (01, €1)(02, €2) = (x(e1,d2)e(dr, €1 + da2, €2)0102, €1€2),

defines a loop T' containing a central subgroup Z x Z. We define the centrally
twisted product of D and & to be I'/ ((—1,—1)). We denote the centrally twisted
product of D and € by D@ €.

Note that if C = D@ E, or more generally, if the “twisting term” involving x and
« vanishes, then the centrally twisted product D @ € becomes the central product
DOE.

Theorem 2.7. Let D and E be linearly independent subcodes of a doubly even code
C, and let D and € be the code loops of D and E. Then D @E is the code loop of
D+ E. O

As we will see in Section 4, the point of Theorem 2.7 is that the definitions of
x and « imply that multiplication in the code loop of D + E must actually be
described by (2.14). Theorem 2.7 is therefore really just a matter of verifying that
the product defined by (2.14) satisfies (2.9)—(2.11). See [14] for details.

3. SOME EASY EXAMPLES AND SMALL EXAMPLES

We first consider some easy examples and some small examples of doubly even
codes and their code loops.

Example 3.1. If C is a doubly even code of dimension k such that o = +1 identi-
cally, then (2.6) and (2.7) imply that x = a = +1 identically, and so the code loop
of C' is an elementary abelian 2-group of order 2!**. We call such a code loop split.
Note that if C is any doubly even code, then the “double” of C (i.e., the subcode
{(c,c) | c € C} of C & C) is split.

Example 3.2. The doubly even code da, (n > 2) may be defined to be the code

with basis {co, ..., ¢,), where the ¢; are the following vectors.
c 1 1 1 1
s 11 11
g 1 1 1 1 1 1 11
(3.1) s 111111 11
¢ 1 1 1 1 1 1 1 1 1111
¢ 1 1 1 1 1 11111 1 1

Let Day, be the code loop of day,. Recall (Aschbacher [1]) that the extraspecial group
2472F (resp. 2172F) is the central product of k copies of the dihedral group of order
8 (resp. k — 1 copies of the dihedral group of order 8 and 1 copy of the quaternion
group of order 8). It follows from inspection of our chosen basis that Da, is the
extraspecial group 2i+("71) (resp. 21_+("71)) for n = £1 (resp. £3) mod 8, and that
for n = 0 (resp. 2) mod 4, Ds, is the central product of a Klein four-group (resp.
cyclic group of order 4) and Do, —».
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Example 3.3. To describe the Hamming codes we need, we use coordinates com-
patible with the MOG (see Conway and Sloane [8, Ch. 11]). Specifically, we write
F§ in a 4 x 2 array, which we call an octad, representing 0 and 1 by blank and
non-blank symbols, respectively.

We define the Hamming point-code (resp. Hamming line-code) e7(P) (resp. e7(L))
to be the code consisting of the codewords in row (P) (resp. row (L)) of Figure 1,
and we define eg(P) (resp. es(L)) to be the code consisting of the codewords in
e7(P) (resp. e7(L)) and their complements.

Vo U1 U2 U3 U4 Us Ve
* * * *
* % * * * * * %
(P)
* * * ok * * *
* * * * ok * *
* * * *
* * * * ok * * %
(L)
* * * * ok * ok *
* * * * ok * * %

e i 7 et k ek ej
FIGURE 1. The point-code and the line-code

Let &7 (resp. €g) be the code loop of e; (resp. eg), in either the point or line
versions. Since eg is just e; with the all-ones codeword adjoined, €g = 2 x €7, so
it will suffice to discuss multiplication in €7, which we will do in some detail, as it
will be quite useful to develop computational facility with €7 and Eg.

Now, the vectors vg, v1, and v in Figure 1 are a basis for er, so if we (arbitrarily)
choose preimages e,i,j € €7 of vg,v1,ve, Theorem 2.7 then implies that &; =
(e) @ (1) & (j))- By collecting signs in front, we may therefore represent every
element of €7 uniquely in the form +(e?(i95")), where p, ¢, and r are either 0 or 1.
Note that if v = £(eP(i95")), then p, ¢, and r can be read from the codeword 7, as
shown in Figure 2.

S Qs

F1GURE 2. Coordinates in the point-code and line-code

Multiplication in €; then becomes

(3.2) (ePr (i ™)) (eP2 (i%2j72)) = (—1)°(ePrFP2 (1 ¥az jratray)
where
(3.3) 5 =p1qiT2 + P17r1g2 + @1p2 + r1p2 + 112,

and —1 = €2 = 42 = j2. Setting k¥ = ij, and checking the resulting multiplication

table, we see that £; is precisely the octonion loop of order 16. (For example,
compare the table in Plugfelder [18, IV.1.1].)
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The easiest method for computing in the octonion loop may well be the following.
For r € Z/7, let i, be the octonion indicated in the v, column of Figure 1 (e.g.,
i3 = ei). Then for all r € Z/7, we have (ir,i,41,%r43) associative, and
(3.4) —1 =142 = ipipg 1043
For instance, isi5 = ig and igia = —ig. See Coxeter [9] for more about this de-
scription of the octonions, including its relation to the Eg lattice and the projective
plane over Fs.

Incidentally, the numbering vy ...vg used in Figure 1 may be obtained in the
following manner. To each ¢ € ey(P) (resp. er(L)) with coordinates p, ¢, and
r from Figure 2(P) (resp. Figure 2(L)), we associate the element p + gz + rz? of
Fs[z]/(2®+2+1) = Fg. Then the codeword v, is the one whose associated element
of Fg is equal to ™.

We remark that Examples 3.2 and 3.3 allow us to calculate in a large class of
examples of code loops because of the following theorem of Conway and Pless [7].

Theorem 3.4. Any doubly even code generated by its tetrads (codewords of weight
4) is the direct sum of copies of doy, €7, and esg. O

It follows that the code loop of a doubly even code generated by its tetrads is
the central product of copies of Ds,, €7, and Eg.

4. THE PARKER LOOP

In this section, as a demonstration of the use of centrally twisted products, and
as a goal of independent interest, we obtain a simple but explicit description of the
Parker loop. We begin with Turyn’s construction of the Golay code (see Conway
and Sloane [8, Ch. 11]).

Definition 4.1. Writing F2* as three octad “coordinates” (i.e., using the MOG,
cf. Example 3.3), we define

(4.1) A={(a,0,a) |a€es(L)}
(4.2) B ={(0,b,b) | bees(L)}
(4.3) T ={(7,7) |Tces(P)}.

We define the Golay code G to be the (doubly even) code A+ B +T.

Let A, B, and T be the code loops of A, B, and T'. If we define P (the Parker loop)
to be the code loop of G, appplying Theorem 2.7 twice, we see that P = (A@B) 7.
More explicitly, using the fact that A and B are split code loops (Example 3.1), and
collecting signs in the third coordinate, we may represent elements of P as triples
(a,b,7) (a € A, b€ B, T € 7T), with multiplication given by

(4.4) (a1,b1,71)(az, bz, 72) = (a1 + a2, b1 + b2, 2711 72)
where
(45) z = X(tl,azbz)a(albl,hagbz,tQ)X(bl,ag)a(al,blag,bg)

and t; is the homomorphic image of 7; in T. Note that the computation of (4.4)
relies on being able to multiply in T, so (4.4) is not quite as simple as it may
seem. However, since T = Eg(P), multiplication in T may be handled with any of
the methods of Example 3.3, and therefore provides relatively little computational
difficulty.
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Another drawback of the above representation is that we need 73 binary “bits”
to represent an element of P. However, since A and B are doubled codes, and T
is a tripled code, if we replace (a, b, 7) with the corresponding (@,b,7) (@, b € es(L)
and 7 € E(P)), we lose no information. For instance, in this reduced notation,
multiplication P will still be given by

(4.6) (@1,b1,71)(@2, b2, T2) = (@1 + @2, b1 + bo, ZT172).

for some Z = £1.

Now, as before, Z is determined by values of x and « on the doubled and tripled
codes A, B, and T, so to compute Z, we could just double or triple @;, b;, and 7;,
as appropriate, and compute x and « in the Golay code. However, more efficiently,
we may actually calculate the values of x and « as if @;, b;, and #; were all con-
tained within the same octad, as long as we “square” the values of x and a when
appropriate. That is, let xo and ap be the functions x and a computed inside a
single octad, and define ¥ by

(4.7) X(@1, @) = x(b1,b2) = +1

(4.8) X(t1,t2) = xo(t1,%2) x(@,b) = xo(@, b)

(4.9) X(@?) = (-1l x(,%) = (-1

and @ by

(4.10) a(ay,az,az) = a(by,be, b3) = +1

(4.11) a(ty,ta, t3) = ao(ty, t2, 3)

(4.12) a(a@y, by, by) = ao(@y,b1,b2)  @(@,as,b1) = ao(@,as,b1)
(4.13) a(ay, b1, t1) = ao(@y,b1,%1)

(4.14) a(ay,ay, 1) = a(ay, b1, 1) = @by, by, t1) = (b, b1, %) = +1

for all @;,b; € eg(L) and #; € eg(P), in the cases listed and their symmetrized
versions. Then, using (2.7)—(2.8) and (4.7)—(4.14) to expand (4.5), we have

-
Z = a(ty, @, bo)a(ay, be, to)a(by, @z, to)a(@y, by, be )@(ay, @z, bo)
X (E1, @)X (E1, b2)X (b1, @2),

where #; is the homomorphic image of 7; in eg(L).
For the purposes of hand calculation, it may be more convenient to think of

elements of P as “words” in generators @, b, and £t (a,b € es(L), t € es(P)),
multiplied together by the following rules:

(4.15)

1. Two generators of type @ (resp. type b) are multiplied together by addition
of code words.

2. Two generators of type =+t are multplied as if they were elements of Eg(P),
collecting signs in the front.

3. Elements commute and associate as described by (4.7)—(4.14).

The word problem for this loop may then be solved by the normal form + (65) 1.

Example 4.2. To illustrate our construction, we consider an example, using the
“generators and relations” version of the Parker loop described above. Let a;, b;,
and t; (i = 1,2,3) be the Parker loop elements shown in Figure 3. (The sign +
is assumed for the ¢;’s.) Following the “word problem” procedure above, we may
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* * * * * *
* * * ok * ok * ok * *
* % * * * % * % * * % *
A X 4 2y 2 *p I* ¥ B T *lr * i
a1 as as b1 by b3 t1 to t3

FIGURE 3. Some elements of the Parker loop

calculate, for instance:

(a1b1)(((bat1)az)t2) = +(a1b1)(((baas2)t1)ts), since x(t1,a2) = +1,
= +(a1b1)((b2a2)(t:112)), from (4.14),
= +(a1b1)((b2a2)ts), since iyiz = +is,
= —((a1b1)(b2a2))t3, since @(ai, by, t3)a(b1, as, t3) = —1,
= +(a1 (b1 (b2a2)))ts, since @(az, b1, ba)a@(ar, b1, as) = —1,
= —(a1((b1b2)az))ts, since @(by, ba, az) = —1,
= —(a1(bsaz))ts, since by + by = bs,
= +(a1(azbs3))ts, since (b3, az) = —1,
= —((a1a2)bs3)ts, since @(as,az,b3) = —1,
= —(asbs)ts, since a1 + as = as.

Note that the izis = +i5 in the third line of (4.2) refers to the version of octonion
multiplication described in Example 3.3 and Figure 1.

We remark that the above example is made slightly easier by the fact that we are
not finding the product of two elements already in normal form, and so we do not
need to rearrange the terms as much as we otherwise might have to. This points
out the fact that it is generally more efficient to wait until the very last step of a
calculation to put elements in normal form.

Remark 4.3. Compare the explicit description of multiplication in the Parker loop
given by Kitazume [16], who first describes the code loop over a code isomorphic
to the hexacode, then describes a code loop over a complement, and then combines
the two using what is essentially a special case of the centrally twisted product.

5. A GENERIC DECOMPOSITION METHOD

Since we were able to give a natural explicit construction of the Parker loop
using a particular decomposition of the Golay code, the question arises: can we do
the same thing for any code loop? In this section, we give a qualified answer of
“yes,” the catch being that the decomposition we describe is unnatural enough that
it may not be much more useful for direct calculation than a basis decomposition
is. However, presenting these results still seems worthwhile, since we believe they
give a good indication of what the best possible results usually look like.

Let C be a doubly even binary code with code loop €. We say that a subcode Cy
of C' is a-isotropic if @ = +1 identically on Cy. Our goal is to express C as a sum
of a-isotropic subcodes, for in terms of code loops, this expresses € as a centrally
twisted product of groups (the code loops of the subcodes). The basic result is
Theorem 5.2, the statement of which uses the following function.
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Definition 5.1. For any positive k, we define u(k) to be the largest nonnegative
1
integer m such that M <k.
For instance, (1) = 0, u(2) = p(3) = 1, p(4) = u(5) = p(6) = 2, p(k) = 3 for
7 < k <10, and so on.

Theorem 5.2. Let C be a doubly even binary code of dimension k. Then C' con-
tains an a-isotropic subcode Cy of dimension u(k) + 1.

Proof. Since any subcode of dimension < 2 is a-isotropic, by induction, it is
enough to show that any a-isotropic subcode Cy of dimension m = dim Cy < p(k)
is contained in some a-isotropic subcode C; of dimension m + 1. Let D be
an arbitrarily chosen complement of Cy, and let A = /\2 Cy, the alternating
square of Cy. Since « is symplectic, by the universal properties of the alternat-
ing square (see Lang [17, Ch. XVI]), @ determines a linear map ® from D to A*,

m(m + 1)

the dual space of A. However, since m < u(k), k > , which means that

-1
dimD=k—-m > M = dim A*. Therefore, there exists some d # 0 in ker ®,
i.e., some nonzero d € D such that a(d, c1,c2) = +1for all ¢1,¢e € Cy. Cr = {Cp, d)
is therefore an a-isotropic subcode of dimension m+1, and the theorem follows. [

Remark 5.3. Note that the bilinear analogue of Theorem 5.2 is that any vector
space C' over Fy of dimension k with an attached symplectic bilinear form has an
isotropic subspace of dimension p + 1, where p is the greatest integer strictly less
than n/2. It therefore seems reasonable to suspect that, when « is nondegenerate,
the subcode Cy in Theorem 5.2 will generally be the largest possible such subcode.

The point of Theorem 5.2 is that by applying it repeatedly, we are guaranteed
to get a decomposition of C' as the sum of a-isotropic subcodes. For example,
suppose dim C' = 12. Applying Theorem 5.2 to C' gives an a-isotropic subcode
Co of dimension 5 such that C' = Cy + D for some subcode D of dimension 7,
and applying Theorem 5.2 to D then gives an a-isotropic subcode C of dimension
4 such that D = Cy + E for some subcode E of dimension 3. E may then be
decomposed into subcodes of dimensions 2 and 1, both of which are a-isotropic,
and so we obtain a decomposition of C' into a-isotropic subcodes of dimensions
5,4,2,1. To further illustrate our result, in Table 1, we have listed the dimensions
of the a-isotropic subcode decomposition of a code C' guaranteed by Theorem 5.2
for 1 < dimC < 16.

dim C | dim C | dim C | dim C
T 1 5 32 9 432 13 5431
2 2 6 321| 10 4321 14 5432
3 21| 7 421| 11 5321 15 54321
4 31| 8 431| 12 5421| 16 64321

TABLE 1. a-isotropic decompositions guaranteed by Theorem 5.2

Remark 5.4. Note that in Section 4, if we adjoin the all 1’s codeword to the
subcode A, replace T with its subcode Ty projecting to ez (P), and then (arbitrarily)
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express Ty as the sum of subcodes of dimension 2 and 1, we obtain a 5,4,2,1 a-
isotropic decomposition of the Golay code, matching the decomposition guaranteed
in Table 1.

Remark 5.5. Since the material in this section really only relies on the symplectic
trilinear form «, and no reference is made to characteristic 2, we may replace the
code C in Theorem 5.2 with a symplectic cubic space C. Our results therefore also
give decompositions of small Frattini Moufang loops as centrally twisted products of
groups. For more on small Frattini Moufang loops and symplectic cubic spaces, see
[14]; for more on trilinear forms and commutative Moufang loops, see Bénéteau [2,
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