When you're connected by zoom:

- Use a laptop or desktop with a large screen so you can read these words clearly.
- ► To conserve bandwidth, please turn off your camera.
- Please mute your microphone unless I call on you.
- Please have the chat window open to ask questions.
- Take-home final due in 1 week. (But all deadlines are elastic.)
- Today's DJ: Trent.

Take-home final out by Wed.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Kurosh Subgroup Theorem

Theorem (Kurosh)

Every subgroup of a free group is free.

For simplicity, we discuss and prove the finite index case, though everything works in general.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

The fundamental group of a basepointed X-labelled graph

Let Γ be an X-labelled graph with basepoint v_0 .

Definition

The **fundamental group of** Γ , written $\pi_1(\Gamma, v_0)$, is:

- Elements: Reduced loops starting at v₀.
- Operation: Concatenation.
- Identity: Empty word 1.
- Inverse of a loop: The same loop, traversed backwards.

Observation: If we change the labels on Γ , $\pi_1(\Gamma, v_0)$ doesn't change; we just have different names for the same paths.

The Retract Lemma

Theorem

Let Γ be a basepointed X-labelled graph, let T be a tree contained in Γ , and let Γ' be the basepointed labelled graph obtained by replacing T with a single vertex and giving each edge a different label in some alphabet Y. Then $\pi_1(\Gamma, v_0) = \pi_1(\Gamma', v_0')$.

Collapsing a tree to a point does not affect the fundamental group.

Proof of the Retract Lemma

First: Relabel Γ so that every edge has a different label. Loops map to loops, so enough to show that:

 \triangleright (Surjective) Every loop in Γ' is the image of some loop in Γ .

Injective) Nontrivial reduced loops map to nontrivial reduced - outside loops. in r

Surjectivity: Suppose we have a loop in Gamma'. Illustrate using example. pull back Loopin F.

net affective Red-green-red paths may pull back to disconnected pieces; similarly, a path that ends in a red edge in Gamma' might not return to basepoint when pulled back.

and concatenations map to concatenations

But remember, any two points in a tree T are connected by a unique path within T. So we can fill all those gaps with paths from within T to get a loop starting and ending at v_0 :

Surjectivity follows.

Injectivity: Suppose we have a reduced loop in Gamma. How could this map to a non-reduced loop in Gamma'? Look at all possible cases of consecutive edges in the loop in Gamma':

so can't cancel

These edges inject

Blueblue

different color edges so different labels

Fortunately, there is a unique reduced path between any two points in a tree, including the case where the two points are the same. So the picture in Gamma is actually one where the black path is trivial:

So actually, we didn't have a reduced path in Gamma; contradiction. Same argument holds for red-red cancellation.

One case left: What if we have a reduced loop that's entirely black? Well, there's only one such path, namely, the trivial path. So the only element of the kernel of our homomorphism is the trivial path.

Fundamental groups of graphs are free

Corollary

Let Γ be a finite basepointed X-labelled graph with basepoint v_0 , E edges, and V vertices. Then $\pi_1(\Gamma, v_0) = F_n$, where n = E - V + 1. **Proof:** Given Γ with V vertices and E edges:

Lose one edge, one vertex, so E-V+1

Same proof works for infinite graphs, but you have to prove things about spanning trees of infinite graphs.

Covering spaces

Coset diagrams

Definition

For $H \leq F_n$, we define the (right) **coset diagram** of H to be the basepointed X-labelled graph given by:

 $\sqrt{2}$

Gives completely X-labelled graph whose vertices are the right cosets of H.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Main Theorem of covering spaces

Let
$$X = \{a_1, ..., a_n\}.$$

Theorem

There exists a bijection between subgroups of F_n and basepointed Subgroup to covering space: Map H to its coset diagram.
Covering space to subgroup: Map (Γ, v₀) to π₁(Γ, v₀). covering spaces of the n-leaved rose, given by:

$$\begin{array}{l} H \longrightarrow \text{coset diag} \\ \text{Check: These maps are inverses.} \\ T_{1}(\Pi, v_{n}) \longleftarrow (\Pi, v_{0}) \end{array}$$

Proof of the Kurosh Subgroup Theorem

H subgroup of finite index in F_n. By Correspondence of Covering Spaces, H is isomorphic to fundamental group of a graph, which we showed must be a free group.

イロト 不得 トイヨト イヨト

-

Here's a slightly fancier result about free groups.

Theorem

Given $1 \neq w \in F_n$, there exists a finite quotient $\rho : F_n \to G$ such that $\rho(w) \neq 1$.

We say that free groups are **residually finite**: Given a nontrivial element w of a free group F_n , there exists a finite quotient of F_n in which some nontrivial "residue" survives.

Enough to show that:

Theorem

Given $1 \neq w \in F_n$, there exists a a subgroup H of finite index in F_n such that $w \notin H$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

For in that case, let N be the intersection of the finitely many conjugates of H. This is a subgroup of finite index in F_n , and $\rho: F_n \to F_n/N$ is the desired finite quotient.

Proof by example

In $F_2 = \langle a, b \rangle$, take w =

◆□ ▶ ◆□ ▶ ◆ 臣 ▶ ◆ 臣 ▶ ○ 臣 ○ のへで