How to solve recurrence relations (especially with generating functions)
 Math 142
 Tim Hsu

This handout summarizes our methods for solving the following problem under certain specific circumstances.

Given a recurrence relation for a_{n} and a sufficient number of initial conditions, find a closed formula for a_{n}.

Linear homogeneous recurrences. Given a recurrence relation of the form

$$
a_{n}=c_{1} a_{n-1}+c_{2} a_{n-2}+\cdots+c_{k-1} a_{n-(k-1)}+c_{k} a_{n-k},
$$

we form the associated characteristic equation

$$
x^{k}=c_{1} x^{k-1}+c_{2} x^{k-2}+\cdots+c_{k-1} x+c_{k}
$$

and find solutions $\alpha_{1}, \ldots, \alpha_{k}$, which may not all be real numbers, and may have repeated solutions.
In the most straightforward case where the solutions $\alpha_{1}, \ldots, \alpha_{k}$ are all different/distinct, we can use generating functions to prove that

$$
a_{n}=b_{1} \alpha_{1}^{n}+\cdots+b_{k} \alpha_{k}^{n},
$$

where the coefficients b_{i} can be solved for using any k initial conditions, e.g., a_{0}, \ldots, a_{k-1}. (If there are repeated roots, something similar but more complicated works.)

Linear inhomogeneous recurrences. For a recurrence of the form $a_{n}=c a_{n-1}+f(n)$, where $c \neq 1$, we have solutions for the following special cases of $f(n)$:

Recurrence $(c \neq 1)$	Solution form
$a_{n}=c a_{n-1}+d$	$a_{n}=A c^{n}+B_{0}$
$a_{n}=c a_{n-1}+d n+e$	$a_{n}=A c^{n}+B_{1} n+B_{0}$
$a_{n}=c a_{n-1}+d n^{2}+e n+f$	$a_{n}=A c^{n}+B_{2} n^{2}+B_{1} n+B_{0}$

Indeed, the analogous result holds for any polynomial function $f(n)$, as long as $c \neq 1$.
The method of generating functions. Both of the above methods can be dervied (i.e., proven as theorems) using generating functions. To simplify the general situation a bit, assume we have a recurrence relation of the form

$$
a_{n}=c a_{n-1}+f(n),
$$

where this time, we allow the possibility that $c=1$. We then apply the following general method to solve for $g(x)=\sum_{n=0}^{\infty} a_{n} x^{n}$, the generating function of the sequence a_{n}.

1. Multiply both sides by x^{n}. We get:

$$
a_{n} x^{n}=c a_{n-1} x^{n}+f(n) x^{n} .
$$

2. Sum both sides from $n=1$ to ∞. We get:

$$
\sum_{n=1}^{\infty} a_{n} x^{n}=\sum_{n=1}^{\infty} c a_{n-1} x^{n}+\sum_{n=1}^{\infty} f(n) x^{n}
$$

3. Adjust the numbering to express all a_{*} sums in terms of $g(x)$. This is the fussiest/most delicate part of the procedure, as you have to use slightly different tactics for each term.

- On the left-hand side, the sum is numbered correctly but is missing the a_{0} term. Therefore, the left-hand side can be rewritten

$$
\sum_{n=1}^{\infty} a_{n} x^{n}=\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right)-a_{0}=g(x)-a_{0} .
$$

- For the first term on the right-hand side, the sum actually has all of the correct terms in it (as we'll see) but is numbered incorrectly. To fix the numbering, we make the substitution $k=n-1$, or $n=k+1$, to get

$$
\sum_{n=1}^{\infty} c a_{n-1} x^{n}=\sum_{k=0}^{\infty} c a_{k} x^{k+1}=c x \sum_{k=0}^{\infty} a_{k} x^{k}=c x g(x)
$$

Moving the a_{0} term to the right-hand saide and combining it with the sum $\sum_{n=1}^{\infty} f(n) x^{n}$, we get an equation

$$
g(x)=c x g(x)+h(x),
$$

where $h(x)=a_{0}+\sum_{n=1}^{\infty} f(n) x^{n}$ encodes both the initial conditions and the inhomogeneous term $f(x)$. Solving for $g(x)$ (algebra omitted), we get

$$
g(x)=\frac{h(x)}{1-c x} .
$$

Once we have the generating function $g(x)$, we can sometimes find a closed formula for a_{n}. Some of the standard generating function formulas may be useful:

$$
\begin{align*}
\frac{1}{1-x} & =\sum_{n=0}^{\infty} x^{n} \tag{1}\\
\frac{1}{(1-x)^{m}} & =\sum_{n=0}^{\infty}\binom{n+(m-1)}{m-1} x^{n} \tag{2}
\end{align*}
$$

Also, starting with (??) and applying the operator $x \frac{d}{d x}$ (i.e., differentiate and then multiply by
$x)$ repeatedly, we get

$$
\begin{align*}
x(1-x)^{-2} & =\sum_{n=1}^{\infty} n x^{n}=\sum_{n=0}^{\infty} n x^{n} \tag{3}\\
x(1-x)^{-2}+2 x^{2}(1-x)^{-3} & =\sum_{n=1}^{\infty} n^{2} x^{n}=\sum_{n=0}^{\infty} n^{2} x^{n} \tag{4}\\
x(1-x)^{-2}+6 x^{2}(1-x)^{-3}+6 x^{3}(1-x)^{-4} & =\sum_{n=1}^{\infty} n^{3} x^{n}=\sum_{n=0}^{\infty} n^{3} x^{n} \tag{5}
\end{align*}
$$

and so on.
Coefficient shifting. One other useful technique for dealing with generating functions is accounting for what happens when you take a known generating function and multiply by x^{k}.

To start with a concrete example, we know that

$$
\frac{1}{(1-x)^{7}}=\sum_{n=0}^{\infty}\binom{n+6}{6} x^{n}
$$

If we obtain a generating function

$$
g(x)=\frac{x^{4}}{(1-x)^{7}}=\sum_{n=0}^{\infty}\binom{n+6}{6} x^{n+4}=\sum_{k=0}^{\infty} a_{k} x^{k}
$$

how can we find a formula for a_{k} ?
Answer: Make the substitution $k=n+4$, which gives us

$$
\sum_{k=4}^{\infty}\binom{k+2}{6} x^{k}=\sum_{k=0}^{\infty} a_{k} x^{k}
$$

We see that $a_{0}=a_{1}=a_{2}=a_{3}=0$, since there are no terms lower than x^{4} on the left-hand side; and for $k \geq 4, a_{k}=\binom{k+2}{6}$.

The general result is that multiplying $\sum_{n=0}^{\infty} a_{n} x^{n}$ by x^{m} has two effects:

1. The coefficients are shifted m steps to the right, i.e., the nonzero coefficients can only start with the x^{m} term; and
2. If the old coefficients are a_{n} and the new coefficients are b_{k}, then for $k \geq m, b_{k}=a_{k-m}$.

However, it's easy to make a sign/directional error if you apply that general result, so at least for beginners, it's probably more reliable just to do a substitution similar to the $k=n+4$ substitution we did in our example.

