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This handout summarizes our methods for solving the following problem under certain specific
circumstances.

Given a recurrence relation for an and a sufficient number of initial conditions, find
a closed formula for an.

Linear homogeneous recurrences. Given a recurrence relation of the form

an = c1an−1 + c2an−2 + · · ·+ ck−1an−(k−1) + ckan−k,

we form the associated characteristic equation

xk = c1x
k−1 + c2x

k−2 + · · ·+ ck−1x+ ck

and find solutions α1, . . . , αk, which may not all be real numbers, and may have repeated solutions.
In the most straightforward case where the solutions α1, . . . , αk are all different/distinct, we

can use generating functions to prove that

an = b1α
n
1 + · · ·+ bkα

n
k ,

where the coefficients bi can be solved for using any k initial conditions, e.g., a0, . . . , ak−1. (If there
are repeated roots, something similar but more complicated works.)

Linear inhomogeneous recurrences. For a recurrence of the form an = can−1+f(n), where
c ̸= 1, we have solutions for the following special cases of f(n):

Recurrence (c ̸= 1) Solution form

an = can−1 + d an = Acn +B0

an = can−1 + dn+ e an = Acn +B1n+B0

an = can−1 + dn2 + en+ f an = Acn +B2n
2 +B1n+B0

Indeed, the analogous result holds for any polynomial function f(n), as long as c ̸= 1.
The method of generating functions. Both of the above methods can be dervied (i.e.,

proven as theorems) using generating functions. To simplify the general situation a bit, assume we
have a recurrence relation of the form

an = can−1 + f(n),

where this time, we allow the possibility that c = 1. We then apply the following general method

to solve for g(x) =

∞∑
n=0

anx
n, the generating function of the sequence an.

1. Multiply both sides by xn. We get:

anx
n = can−1x

n + f(n)xn.



2. Sum both sides from n = 1 to ∞. We get:

∞∑
n=1

anx
n =

∞∑
n=1

can−1x
n +

∞∑
n=1

f(n)xn.

3. Adjust the numbering to express all a∗ sums in terms of g(x). This is the fussiest/most
delicate part of the procedure, as you have to use slightly different tactics for each term.

� On the left-hand side, the sum is numbered correctly but is missing the a0 term. There-
fore, the left-hand side can be rewritten

∞∑
n=1

anx
n =

( ∞∑
n=0

anx
n

)
− a0 = g(x)− a0.

� For the first term on the right-hand side, the sum actually has all of the correct terms
in it (as we’ll see) but is numbered incorrectly. To fix the numbering, we make the
substitution k = n− 1, or n = k + 1, to get

∞∑
n=1

can−1x
n =

∞∑
k=0

cakx
k+1 = cx

∞∑
k=0

akx
k = cxg(x).

Moving the a0 term to the right-hand saide and combining it with the sum
∞∑
n=1

f(n)xn, we

get an equation
g(x) = cxg(x) + h(x),

where h(x) = a0 +
∞∑
n=1

f(n)xn encodes both the initial conditions and the inhomogeneous

term f(x). Solving for g(x) (algebra omitted), we get

g(x) =
h(x)

1− cx
.

Once we have the generating function g(x), we can sometimes find a closed formula for an.
Some of the standard generating function formulas may be useful:

1

1− x
=

∞∑
n=0

xn (1)

1

(1− x)m
=

∞∑
n=0

(
n+ (m− 1)

m− 1

)
xn (2)

Also, starting with (??) and applying the operator x
d

dx
(i.e., differentiate and then multiply by



x) repeatedly, we get

x(1− x)−2 =
∞∑
n=1

nxn =
∞∑
n=0

nxn (3)

x(1− x)−2 + 2x2(1− x)−3 =

∞∑
n=1

n2xn =

∞∑
n=0

n2xn (4)

x(1− x)−2 + 6x2(1− x)−3 + 6x3(1− x)−4 =
∞∑
n=1

n3xn =
∞∑
n=0

n3xn (5)

and so on.
Coefficient shifting. One other useful technique for dealing with generating functions is

accounting for what happens when you take a known generating function and multiply by xk.
To start with a concrete example, we know that

1

(1− x)7
=

∞∑
n=0

(
n+ 6

6

)
xn.

If we obtain a generating function

g(x) =
x4

(1− x)7
=

∞∑
n=0

(
n+ 6

6

)
xn+4 =

∞∑
k=0

akx
k,

how can we find a formula for ak?
Answer: Make the substitution k = n+ 4, which gives us

∞∑
k=4

(
k + 2

6

)
xk =

∞∑
k=0

akx
k.

We see that a0 = a1 = a2 = a3 = 0, since there are no terms lower than x4 on the left-hand side;

and for k ≥ 4, ak =

(
k + 2

6

)
.

The general result is that multiplying
∞∑
n=0

anx
n by xm has two effects:

1. The coefficients are shifted m steps to the right, i.e., the nonzero coefficients can only start
with the xm term; and

2. If the old coefficients are an and the new coefficients are bk, then for k ≥ m, bk = ak−m.

However, it’s easy to make a sign/directional error if you apply that general result, so at least for
beginners, it’s probably more reliable just to do a substitution similar to the k = n+4 substitution
we did in our example.


