Math 142, problem set 09
 REVISED TUE NOV 15
 Outline due: Thu Nov 10
 Final version due: Wed Nov 16

Problems to be turned in:

1. Solve the recurrence relation $a_{n}=3 a_{n-1}-a_{n-2}-a_{n-3}$ with initial conditions $a_{0}=4$, $a_{1}=2, a_{2}=7$.
2. Let a_{n} be the number of tilings of an $n \times 1$ grid using red and blue dominoes (2×1 tiles) and black, white, and green single squares (1×1 tiles).
(a) Find a recurrence relation for a_{n} and use that recurrence relation and the values of a_{1} and a_{2} to find a closed formula for a_{n}.
(b) Find constants C and α such that a_{n} is $C \alpha^{n}$ rounded off to the nearest integer (except possibly for finitely many values of n).
3. An octal sequence is a sequence in the digits $0-7$. Let a_{n} be the number of octal sequences of length n not containing 1234 as a subsequence.
(a) Find a recurrence relation for a_{n}.
(b) Find the solutions to the characteristic equation of the recurrence relation. (Use a computer algebra system like Wolfram Alpha and give your answer in terms of decimal approximations.)
(c) Find the initial values a_{1}, \ldots, a_{4}.
(d) Set up, but do not solve, a system of linear equations whose solution gives you a closed form for a_{n}.
4. Solve the recurrence relation $a_{n}=3 a_{n-1}+2 n, a_{0}=1$.
5. Solve the recurrence relation $a_{n}=2 a_{n-1}+n^{2}, a_{0}=0$.
6. Suppose you start off a job with an annual salary of $\$ 80,000$, and each year you get a 3% cost-of-living salary increase and a $\$ 1,000$ merit salary increase. Let s_{n} be your annual salary n years after you start your job, e.g., $s_{0}=80000$.
(a) Find a recurrence relation for s_{n}.
(b) Solve your recurrence relation to find a closed formula for s_{n}.
