Math 142, problem set 08 REVISED/CORRECTED WED NOV 02

Outline due: Thu Nov 03

Final version due: Tue Nov 08

Problems to be turned in:

1. For this problem, you need to know a fact from what you might call "K-12 number theory", if not expressed in K-12 terms: Namely, that every positive integer n has a unique factorization of the form

$$
n=p_{1}^{e_{1}} p_{2}^{e_{2}} \ldots p_{k}^{e_{k}}
$$

where $1<p_{1}<p_{2}<\cdots<p_{k}$ are prime. Recall also that $a^{-s} b^{-s}=(a b)^{-s}$.
(a) If you write $\frac{1}{1-2^{-s}}$ as a sum of the form $\sum n^{-s}$, which n appear as the base of some n^{-s} in the sum? Explain.
(b) If you write $\left(\frac{1}{1-2^{-s}}\right)\left(\frac{1}{1-3^{-s}}\right)$ as the product of two sums of the form described above, and multiply those sums together to get a single sum $\sum n^{-s}$, which n appear as the base of some n^{-s} in the final sum? Explain in terms of the prime factorizations of those n.
(c) Explain why (prove that)

$$
\sum_{n=1}^{\infty} n^{-s}=\prod_{p \text { prime }} \frac{1}{1-p^{-s}}
$$

2. Find a recurrence relation for the number of sequences of pennies, nickels, dimes, and quarters that add up to n cents.
3. Find a recurrence relation for the number of sequences of letters $\mathrm{A}-\mathrm{Z}$ of length n that do not contain the sequence EXIT.
4. Find a recurrence relation for the number of tilings of an $n \times 1$ grid using red, green, and blue dominoes (2×1 tiles) and black and white triominoes (3×1 tiles). For example, one such tiling for $n=14$ is:

5. Find a recurrence relation for the number of sequences of the numbers 1,2 , and 4 (possibly with repeats) such that the sum of the numbers in the sequence is n and the sequence does not contain " $1,2,4$ " as a subsequence.
(continued on next page)
6. Let $a_{n, k}$ be the number of ways to express $\{1, \ldots, n\}$ as the (unordered) union of k nonempty pairwise disjoint sets. For example, $a_{3,2}=3$ because there are exactly 3 ways to express $\{1,2,3\}$ as the union of two nonempty disjoint sets:

$$
\{1,2,3\}=\{1\} \cup\{2,3\}=\{1,3\} \cup\{2\}=\{1,2\} \cup\{3\} .
$$

Find a recurrence relation for $a_{n, k}$. (Suggestion: Do a case breakdown based on whether the last element n is contained in a singleton set.)
7. The merge sort algorithm merge does the following when applied to a list of n numbers:

- Apply merge to the first $n / 2$ entries in the list to produce a sorted list of length $n / 2$.
- Apply merge to the last $n / 2$ entries in the list to produce a sorted list of length $n / 2$.
- Merge the two sorted lists to produce a sorted list of length n.

Suppose that last step takes n units of time. Let a_{n} be the amount of time it takes to apply merge to a list of n numbers, taking $a_{1}=t$ for some constant t.
(a) Find a recurrence relation for a_{n}, assuming n is a power of 2 .
(b) Solve for a_{n}, using the table in Section 7.2.

