Math 142, problem set 02
 Outline due: Wed Aug 31
 Final version: Wed Sep 07

Problems to be turned in:

1. (1.3) 10 .
2. For each of the following graphs, either show that the graph is bipartite by finding a 2 -coloring of the graph, or explain how you know that the graph is not bipartite.

3. (1.4) 6 .
4. (1.4) 16.
5. (1.4) 20.
6. (a) Make a connected graph G_{1} whose vertices have degrees $1,3,3,4,4,5$. Add as few edges as possible to G_{1} to create a new graph (possibly a multigraph) G_{2} that has an Euler cycle.
(b) Given any connected graph G_{1} with v vertices, explain how to add at most $v / 2$ edges to G to create a new graph (possibly a multigraph) G_{2} that has an Euler cycle. (Your explanation should basically be an algorithm. Make sure to explain how you know that you add at most $v / 2$ edges and that your method works.)
