Coefficients of generating functions

$$
\begin{align*}
\frac{1-x^{m}}{1-x} & =1+x+x^{2}+\cdots+x^{m-1} \tag{1}\\
\frac{1}{1-x} & =1+x+x^{2}+x^{3}+\ldots \tag{2}\\
(1+x)^{n} & =\binom{n}{0}+\binom{n}{1} x+\binom{n}{2} x^{2}+\cdots+\binom{n}{n} x^{n} \tag{3}\\
\left(1-x^{m}\right)^{n} & =\binom{n}{0}-\binom{n}{1} x^{m}+\binom{n}{2} x^{2 m}+\cdots+(-1)^{n}\binom{n}{n} x^{n m} \tag{4}\\
\frac{1}{(1-x)^{n}} & =1+\binom{(n-1)+1}{1} x+\binom{(n-1)+2}{2} x^{2}+\ldots \tag{5}
\end{align*}
$$

Note that taking powers of (1) gives a product of the form (4) and the form (5). We can also get new generating functions by substituting for x; for example, replacing x with x^{3} in (2) gives

$$
\frac{1}{1-x^{3}}=1+x^{3}+x^{6}+x^{9}+\ldots
$$

Products: In the abstract, if

$$
\begin{aligned}
& f(x)=\sum a_{k} x^{k} \\
& g(x)=\sum b_{\ell} x^{\ell} \\
& h(x)=f(x) g(x)=\sum c_{r} x^{r},
\end{aligned}
$$

then

$$
\begin{equation*}
c_{r}=a_{0} b_{r}+a_{1} b_{r-1}+\cdots+a_{r-1} b_{1}+a_{r} b_{0}=\sum_{k=0}^{r} a_{k} b_{r-k} . \tag{6}
\end{equation*}
$$

In practice, we are usually less interested in the abstract summation form (6), and more likely to use the following idea: In the product $f(x) g(x)$, where

$$
\begin{aligned}
& f(x)=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+\ldots \\
& g(x)=b_{0}+b_{1} x+b_{2} x^{2}+b_{3} x^{3}+\ldots
\end{aligned}
$$

to find the coefficient of x^{r}, we sum all products $\left(a_{k} x^{k}\right)\left(b_{\ell} x^{\ell}\right)$ where $k+\ell=r$.
This approach works particularly well if many a_{k} and b_{ℓ} are 0 . For example, suppose

$$
\begin{aligned}
& f(x)=7 x^{3}+5 x^{4}+4 x^{10}+3 x^{13}+\ldots \\
& g(x)=2+4 x^{7}+6 x^{9}+7 x^{12}+\ldots
\end{aligned}
$$

and we want to find the coefficient of x^{13} in $f(x) g(x)$. By starting with smaller k and larger ℓ and increasing k and decreasing ℓ to match, we see that the only pairs (k, ℓ) such that both a_{k} and b_{ℓ} are nonzero and $k+\ell=13$ are the pairs $(k, \ell)=(4,9)$ and $(k, \ell)=(13,0)$. It follows that the coefficient of x^{13} in $f(x) g(x)$ is $5(6)+3(2)=36$.

