
Coefficients of generating functions
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Note that taking powers of (1) gives a product of the form (4) and the form (5). We can also get
new generating functions by substituting for x; for example, replacing x with x3 in (2) gives
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Products: In the abstract, if
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then
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In practice, we are usually less interested in the abstract summation form (6), and more likely
to use the following idea: In the product f(x)g(x), where

f(x) = a0 + a1x+ a2x
2 + a3x

3 + . . .

g(x) = b0 + b1x+ b2x
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to find the coefficient of xr, we sum all products (akx
k)(bℓx

ℓ) where k + ℓ = r.
This approach works particularly well if many ak and bℓ are 0. For example, suppose

f(x) = 7x3 + 5x4 + 4x10 + 3x13 + . . .

g(x) = 2 + 4x7 + 6x9 + 7x12 + . . .

and we want to find the coefficient of x13 in f(x)g(x). By starting with smaller k and larger ℓ and
increasing k and decreasing ℓ to match, we see that the only pairs (k, ℓ) such that both ak and bℓ
are nonzero and k + ℓ = 13 are the pairs (k, ℓ) = (4, 9) and (k, ℓ) = (13, 0). It follows that the
coefficient of x13 in f(x)g(x) is 5(6) + 3(2) = 36.


