## Binomial identities <br> Math 142

Part A: Answer all of the following questions. Try to think in terms of a process: What kind of process would have this number of possible outcomes?

1. For $k \leq 6 \leq n$, what might $\binom{n}{6}\binom{6}{k}$ be counting?
2. For $k \leq n$, what might $\binom{n}{k} 2^{k}$ be counting?
3. What might $n^{4}$ be counting? (Think balls in boxes.)
4. For $3 \leq m \leq n$, what might $\binom{n}{3}\binom{n}{m-3}$ be counting?
5. For $3 \leq m \leq n$, what might $\binom{n}{3}\binom{n-3}{m-3}$ be counting? Find a different product of binomials equal to $\binom{n}{3}\binom{n-3}{m-3}$.

Part B: Do one of the following problems in your team. In each problem, use a combinatorial proof as suggested by the ideas from Part A.

1. Prove that

$$
\binom{n}{0}+\binom{n+1}{1}+\binom{n+2}{2}+\cdots+\binom{n+r}{r}=\binom{n+r+1}{r} .
$$

2. Prove that

$$
\binom{n}{0}^{2}+\binom{n}{1}^{2}+\binom{n}{2}^{2}+\cdots+\binom{n}{n}^{2}=\binom{2 n}{n} .
$$

3. Prove that

$$
\sum_{k=0}^{r}\binom{m}{k}\binom{n}{r-k}=\binom{m+n}{r}
$$

4. Prove that

$$
\sum_{k=0}^{m}\binom{m}{k}\binom{n}{r+k}=\binom{m+n}{m+r} .
$$

