The big board of balls in boxes Math 142

	$\begin{array}{c} s \text{ distinct balls} \\ \text{in} \\ t \text{ distinct boxes} \end{array}$	s identical balls in t distinct boxes	s distinct balls in t identical boxes	s identical balls in t identical boxes
$ \leq 1 \text{ ball} \\ \text{per box,} \\ t \geq s $	$P(t,s) = \frac{t!}{(t-s)!}$ (Sect. 5.2)	$C(t,s) = \begin{pmatrix} t \\ s \end{pmatrix}$ (Sect. 5.2)	1	1
No limits on balls per box	t^s (Sect. 5.1)	Divider Thm: $\binom{s+(t-1)}{s}$ (Sect. 5.3)	Bell numbers $B(s)$	Partitions, $\leq t$ parts
≥ 1 balls per box	$t! \begin{cases} s \\ t \end{cases}$ (Sect. 6.4)	Divider Thm, 1/box already, $\binom{s-1}{s-t}$ (Sect. 5.3)	Stirling numbers (second kind) $\begin{cases} s \\ t \end{cases}$ (Sect. 6.4)	Partitions, t parts
$n_i \text{ balls}$ in box i , $\sum n_i = s$	$MISSISSIPPI$ theorem $P(s; n_1, \dots, n_t)$ (Sect. 5.3)	1		
$\leq n_i \text{ balls}$ in box i , $\sum n_i = s$	Exponential generating functions	Generating function $\prod(1 + \dots + x^{n_i})$ (Sect. 6.1-6.2)		

Balls in boxes	Arrangement/selection
s distinct balls, t distinct boxes	Arranging s objects from total of t (balls represent locations)
s identical balls, t distinct boxes	Selecting s objects from total of t (balls represent chosen objects)