The big board of balls in boxes Math 142

	s distinct balls in t distinct boxes	s identical balls in t distinct boxes	s distinct balls in t identical boxes	s identical balls in t identical boxes
≤ 1 ball per box, $t \geq s$	$P(t, s)=\frac{t!}{(t-s)!}$ (Sect. 5.2)	$C(t, s)=\binom{t}{s}$ (Sect. 5.2)	1	1
No limits on balls per box	t^{s} (Sect. 5.1)	Divider Thm: $\binom{s+(t-1)}{s}$ (Sect. 5.3)	Bell numbers $B(s)$	Partitions, $\leq t$ parts
≥ 1 balls per box	$t!\left\{\begin{array}{l} s \\ t \end{array}\right\}$ (Sect. 6.4)	Divider Thm, 1/box already, $\binom{s-1}{s-t}$ (Sect. 5.3)	Stirling numbers (second kind) $\left\{\begin{array}{l} s \\ t \end{array}\right\}$ (Sect. 6.4)	Partitions, t parts
	MISSISSIPPI theorem $P\left(s ; n_{1}, \ldots, n_{t}\right)$ (Sect. 5.3)	1		
$\leq n_{i}$ balls in box i, $\sum n_{i}=s$	Exponential generating functions	Generating function $\prod\left(1+\cdots+x^{n_{i}}\right)$ (Sect. 6.1-6.2)		

Balls in boxes	Arrangement/selection
s distinct balls, t distinct boxes	Arranging s objects from total of t (balls represent locations)
s identical balls, t distinct boxes	Selecting s objects from total of t (balls represent chosen objects)

