Sample exam 1 Math 131B, Fall 2023

1. (16 points) Let $v:[a, b] \rightarrow \mathbf{R}$ be a bounded nonnegative function. Recall that a partition P of $[a, b]$ is a finite subset $\left\{x_{0}, \ldots, x_{n}\right\} \subset[a, b]$ such that $a=x_{0}<x_{1}<\cdots<x_{n-1}<x_{n}=$ b, let $(\Delta x)_{i}=x_{i}-x_{i-1}$, and define

$$
M(v ; P, i)=\sup \left\{v(x) \mid x \in\left[x_{i-1}, x_{i}\right]\right\}, \quad m(v ; P, i)=\inf \left\{v(x) \mid x \in\left[x_{i-1}, x_{i}\right]\right\} .
$$

Let \mathcal{P} be the set of all partitions of $[a, b]$.
(a) For a partition $P \in \mathcal{P}$, define $U(v ; P)$.
(b) Define the upper Riemann integral $\overline{\int_{a}^{b}} v(x) d x$.
(c) In part (b), you used either a sup or an inf in your definition. Briefly EXPLAIN why the sup or inf in this definition gives a "best possible estimate" of the area under the curve $v(x)$ of a particular type.

You may find it helpful to draw a picture or pictures to illustrate the above answers.
In questions $2-4$, you are given a statement. If the statement is true, you need only write "True", though a justification may earn you partial credit if the correct answer is "False". If the statement is false, write "False", and justify your answer as specifically as possible. (Do not just write "T" or "F", as you may not receive any credit; write out the entire word "True" or "False".)
2. (13 points) TRUE/FALSE: Let $v:[1,5] \rightarrow \mathbf{R}$ be a function such that for every $a \in[1,5]$, the limit $\lim _{x \rightarrow a} \frac{v(x)-v(a)}{x-a}$ exists. Then it is possible that for every partition P of $[1,5]$, we have that such that $U(v ; P)-L(v ; P) \geq \frac{1}{3}$.
3. (13 points) TRUE/FALSE: Let a_{n} be a sequence in \mathbf{C} such that for every $\epsilon>0$, there exists some $N(\epsilon)$ such that for every $n, k>N(\epsilon)$, we have that $\left|a_{n}-a_{k}\right|<\epsilon$. Then it must be the case that $\lim _{n \rightarrow \infty} a_{n}=L$ for some $L \in \mathbf{C}$.
4. (13 points) TRUE/FALSE: Let S be a nonempty subset of \mathbf{R} such that for all $x \in S$, $x \geq 3$. Then it must be the case that $\inf S=3$.
5. (15 points) PROOF QUESTION. Let X be a closed and bounded subset of \mathbf{C}, and let $f: X \rightarrow \mathbf{R}$ be a continuous function.
(a) State the Bolzano-Weierstrass Theorem for sequences in X.
(b) State the sequential definition of what it means for f to be continuous at $a \in X$.
(c) Suppose that x_{n} is a sequence in X such that $\lim _{n \rightarrow \infty} f\left(x_{n}\right)=+\infty$. Prove that there exists some $a \in X$ such that $f(a)=+\infty$, and therefore, by contradiction, no such sequence x_{n} can exist. (If you do not see how to prove the full statement, for partial credit, you may add the extra assumption that x_{n} is a convergent sequence.)
6. (15 points) PROOF QUESTION. Let $f:[2,9] \rightarrow \mathbf{C}$ be a function.
(a) State the $\epsilon-\delta$ definition of what it means for f be continuous at $a=6$.
(b) Now suppose that, for any $x, y \in[2,9]$, we have

$$
|f(x)-f(y)| \leq 37|x-y|
$$

Prove that f is continuous at $a=6$.
7. (15 points) PROOF QUESTION. Let X be a metric space and let L be a point in X.
(a) Let x_{n} be a sequence in X. Define what it means to say that $\lim _{n \rightarrow \infty} x_{n}=L$. (Note that x_{n} and L may not be numbers, just elements of the metric space X.)
(b) For all n, let

$$
a_{n}=3 d\left(x_{n}, L\right) .
$$

Prove that if $\lim _{n \rightarrow \infty} x_{n}=L$, then $\lim _{n \rightarrow \infty} a_{n}=0$.

