Sample Final Exam
 Math 131A, Spring 2015

This is the final from Spring 2014, minus one question.

1. (18 points) State the Fundamental Theorems of Calculus, I and II. For simplicity, take each domain, region of continuity, region of differentiability, etc., to be the closed interval $[a, b]$.
2. (13 points) State the Extreme Value Theorem.
3. (15 points) Let $a_{n}=\frac{n^{2}+n \cos n}{5^{n}}$. Determine if the series $\sum_{n=1}^{\infty} a_{n}=\sum_{n=1}^{\infty} \frac{n^{2}+n \cos n}{5^{n}}$ converges or diverges, and prove your answer.

For questions $4-8$, you are given a statement. If the statement is true, you need only write "True", though a justification may earn you partial credit if the correct answer is "False". If the statement is false, write "False", and justify your answer as specifically as possible. (Do not just write "T" or "F", as you may not receive any credit; write out the entire word "True" or "False".)
4. (13 points) If $\sum_{n=0}^{\infty} a_{n} x^{n}$ is a power series with radius of convergence $R=2$, then it must be the case that the series $\sum_{n=1}^{\infty} n a_{n}\left(\frac{5}{3}\right)^{n-1}$ converges.
5. (13 points) Let S be a nonempty subset of \mathbf{R} such that for all $x \in S,-13 \leq x \leq 78$. It must be the case that there exists some $m \in S$ such that for all $x \in S, m \leq x$.
6. (13 points) For $g: \mathbf{R} \rightarrow \mathbf{R}$, it is possible that $\lim _{x \rightarrow-3} \frac{g(x)-g(-3)}{x-(-3)}=5$,
$\lim _{n \rightarrow \infty} g\left(-3+\frac{1}{n}\right)=7$, and $\lim _{n \rightarrow \infty} g\left(-3+\frac{\pi}{n^{2}}\right)=5$.
7. (13 points) Let a_{n} be a sequence such that $\lim _{n \rightarrow \infty} a_{n}=12$. It is possible that, for all $n \in \mathbf{N}, a_{3 n}>13$.
8. (13 points) Let $s_{n}=\cos \left(\sin \left(n^{2}\right)\right)$. It must be the case that there exists a increasing sequence of positive integers $n_{1}<n_{2}<\cdots<n_{k}<\ldots$ such that $\lim _{k \rightarrow \infty} s_{n_{k}}$ converges.
9. (15 points) PROOF QUESTION. Define $f: \mathbf{R} \rightarrow \mathbf{R}$ by

$$
f(x)= \begin{cases}x^{4 / 3} \cos \left(\frac{1}{x}\right) & \text { if } x \neq 0 \\ 0 & \text { if } x=0\end{cases}
$$

Prove that f is differentiable at 0 .
10. (15 points) PROOF QUESTION. Define $g: \mathbf{R} \rightarrow \mathbf{R}$ by

$$
g(x)= \begin{cases}5 x-15 & \text { if } x \text { is rational } \\ x^{3}-17 & \text { if } x \text { is irrational }\end{cases}
$$

Prove that g is discontinuous at $x=2$.
11. (15 points) PROOF QUESTION. Let $f: \mathbf{R} \rightarrow \mathbf{R}$ be a function (not necessarily continuous, bounded, or any other property) and let $h: \mathbf{R} \rightarrow \mathbf{R}$ be a differentiable function such that for all $x \in \mathbf{R}, h^{\prime}(x)=10+7 \sin (f(x))$. Prove that if $a, b \in \mathbf{R}$ and $a<b$, then $h(b)-h(a) \geq 3(b-a)$.
12. (15 points) PROOF QUESTION. Let

$$
S=\left\{\left.2-\frac{3}{n+1} \right\rvert\, n \in \mathbf{N}\right\} .
$$

Use the definition of supremum to prove that $\sup S=2$.
13. (16 points) PROOF QUESTION. Let $f_{n}(x)=\frac{1}{n^{2} x}$ and let $f(x)=0$. You make take it as given that f_{n} converges to f pointwise for all $x \neq 0$ (i.e., you do not need to prove this).
(a) Prove that f_{n} converges to f uniformly on the interval $\left[\frac{1}{3}, 1\right]$.
(b) Prove that f_{n} converges to f non-uniformly on the interval $(0,1]$.

