Sample Final Exam Math 131A, Spring 2015

This is the final from Spring 2014, minus one question.

1. (18 points) State the Fundamental Theorems of Calculus, I and II. For simplicity, take each domain, region of continuity, region of differentiability, etc., to be the closed interval [a, b].

2. (13 points) State the Extreme Value Theorem.

3. (15 points) Let $a_n = \frac{n^2 + n \cos n}{5^n}$. Determine if the series $\sum_{n=1}^{\infty} a_n = \sum_{n=1}^{\infty} \frac{n^2 + n \cos n}{5^n}$ converges or diverges, and prove your answer.

For questions 4–8, you are given a statement. If the statement is true, you need only write "True", though a justification may earn you partial credit if the correct answer is "False". If the statement is false, write "False", and justify your answer **as specifically as possible**. (Do not just write "T" or "F", as you may not receive any credit; write out the entire word "True" or "False".)

4. (13 points) If $\sum_{n=0}^{\infty} a_n x^n$ is a power series with radius of convergence R = 2, then it must be the case that the series $\sum_{n=1}^{\infty} na_n \left(\frac{5}{3}\right)^{n-1}$ converges.

5. (13 points) Let S be a nonempty subset of **R** such that for all $x \in S$, $-13 \le x \le 78$. It must be the case that there exists some $m \in S$ such that for all $x \in S$, $m \le x$.

6. (13 points) For
$$g : \mathbf{R} \to \mathbf{R}$$
, it is possible that $\lim_{x \to -3} \frac{g(x) - g(-3)}{x - (-3)} = 5$,
 $\lim_{n \to \infty} g\left(-3 + \frac{1}{n}\right) = 7$, and $\lim_{n \to \infty} g\left(-3 + \frac{\pi}{n^2}\right) = 5$.

7. (13 points) Let a_n be a sequence such that $\lim_{n \to \infty} a_n = 12$. It is possible that, for all $n \in \mathbf{N}$, $a_{3n} > 13$.

8. (13 points) Let $s_n = \cos(\sin(n^2))$. It must be the case that there exists a increasing sequence of positive integers $n_1 < n_2 < \cdots < n_k < \ldots$ such that $\lim_{k \to \infty} s_{n_k}$ converges.

9. (15 points) **PROOF QUESTION.** Define $f : \mathbf{R} \to \mathbf{R}$ by

$$f(x) = \begin{cases} x^{4/3} \cos\left(\frac{1}{x}\right) & \text{if } x \neq 0, \\ 0 & \text{if } x = 0. \end{cases}$$

Prove that f is differentiable at 0.

10. (15 points) **PROOF QUESTION.** Define $g : \mathbf{R} \to \mathbf{R}$ by

$$g(x) = \begin{cases} 5x - 15 & \text{if } x \text{ is rational,} \\ x^3 - 17 & \text{if } x \text{ is irrational.} \end{cases}$$

Prove that g is **dis**continuous at x = 2.

11. (15 points) **PROOF QUESTION.** Let $f : \mathbf{R} \to \mathbf{R}$ be a function (not necessarily continuous, bounded, or any other property) and let $h : \mathbf{R} \to \mathbf{R}$ be a differentiable function such that for all $x \in \mathbf{R}$, $h'(x) = 10 + 7\sin(f(x))$. Prove that if $a, b \in \mathbf{R}$ and a < b, then $h(b) - h(a) \ge 3(b - a)$.

12. (15 points) **PROOF QUESTION.** Let

$$S = \left\{ 2 - \frac{3}{n+1} \middle| n \in \mathbf{N} \right\}.$$

Use the definition of supremum to prove that $\sup S = 2$.

13. (16 points) **PROOF QUESTION.** Let $f_n(x) = \frac{1}{n^2x}$ and let f(x) = 0. You make take it as given that f_n converges to f pointwise for all $x \neq 0$ (i.e., you do not need to prove this).

- (a) Prove that f_n converges to f uniformly on the interval $\left[\frac{1}{3}, 1\right]$.
- (b) Prove that f_n converges to f non-uniformly on the interval (0, 1].