Outline for PS01 Math 131B

Definitions. The definitions you had to copy were: (2.1) upper bound, sup, lower bound, inf, additive abelian group, commutative ring, field, ordered field, (order) completeness, real numbers.

- (2.2) complex numbers, (complex) conjugate, norm, absolute value, real part, imaginary part,
- (2.3) metric, metric space.
- (2.4) sequence, subsequence, limit (of a sequence), converges, convergent, diverges, divergent, bounded (sequence), open disc $\mathcal{N}_r(z)$, closed disc $\overline{\mathcal{N}_r(z)}$, complement, open subset of \mathbf{C} , closed subset of \mathbf{C} , limit (in a metric space), converge (in a metric space), dense subset of a metric space.

Problem plans.

- 1. **A**. x = p/q, $p, q \in \mathbf{Z}$, $q \neq 0$. (stuff)
- C. There exist infinitely many $n \in \mathbf{Z}$ such that $\cos(2\pi nx) = 1$.
- 2. A. $S, T \subseteq \mathbf{R}, S, T$ nonempty and bounded.
- **A**. For every $s \in S$ and $t \in T$, $s \le t$.
- (a) **A**. $t \in T$
- (stuff)
- C. $t \ge \sup S$.
- (b) (stuff)
- C. $\sup S \leq \inf T$.
- 3. (2.2.3) By contradiction:
- **A**. There is a definition of \leq on **C**. (stuff)
- C. Contradiction.
- 2.4.1, 2.4.10.
- 4. (2.3.1) **A**. $z, w \in \mathbf{C}$

(stuff)

- C. $\Re(z\overline{w}) \leq |z||w|$
- 5. (2.3.5) **A**. X a metric space, $a, b, x \in X$. (stuff)

C. $d(a,b) - d(b,x) \le d(a,x) \le d(a,b) + d(b,x)$.

6. (2.4.1) **A**. $\lim_{n \to \infty} a_n = L \neq 0$.

(stuff

- **C**. There exists K such that if n > K, then $|a_n| \ge |L|/2$.
- 7. (2.4.10) **A**. x_n sequence in a metric space $X, L \in X$. d_n sequence in **R** such that $\lim_{n \to \infty} d_n = 0$, $d(x_n, L) < d_n$ for all n.

(stuff)

 $\mathbf{C}.\ \lim_{n\to\infty}x_n=L.$