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Use a laptop or desktop with a large screen so you can read
these words clearly.

In general, please turn off your camera and mute yourself.

Exception: When we do groupwork, please turn both your
camera and mic on. (Groupwork will not be recorded.)

Please always have the chat window open to ask questions.

Reading for today: - Reading for one week from today:
4.7,10.1, 12.1. ,Lf

PS09 outline due today, full version due in 1 week.
NO CLASSES ON WED NOV 11 — VETERANS DAY

Problem session, Fri Nov 13, 10:00-noon on Zoom.



Recap: Two tools

g Convolutions:

1
(Fxg)(x)= /0 f(x —t)g(t)dt.

K, : [—%, %] — R such that

1. For all nand all x € [~ 1, %] Kn(x) > 0.

1/2
2. For all n, / Kn(x) dx = 1; and
~1/2 f } t !

3. For any fixed § > 0, we have

% And Dirac kernels, i.e., a sequence of continuous functions

lim / Kn(x) dx = 0.
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The Fejér kernel

R
xample

The Dirichlet kernel {Dy | N > 0} is

6""\- SDinc\ Dn(x) = ZNj en().

Example n=—N
The Fejér kernel {Fy | N > 1} is

\ Do(x) + -+ Dn-1(x)
W £ _ Do n-1(x)
AL Fuo) q
Theorem o trig poly degree N
For f € CO(SY), f x Dy = fy, the Nth Fourier polynomial of f, and

(f x Fy)(x) = fo(x) + N+ le(X)} trlg poly degree

the average of the Fourier polynomials fy, ., ., fn—1 V(K r
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The goals

L? inversion theorem: If f € [2(S!), then the Fourier series of f
converges to f in the L? metric.

.mj € 600 =0 L\,

F [
C! inversion theorem: If f € C1(S1). then the Fourier series of f
converges absolutely and uniformly to f.
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Main technical result

Think . K= &, (Féjer\
Theore

lf{KN}Zs’a Dirac kernel, and f € C°(S'), then

lim (f * Ky)(x) = f(x),

N—oo

where convergence is uniform on S*.
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Two lemmas ni

To prove the main tech‘}dcal result:

Lemma \
For any €1 > 0, there exists some 61(e1) < 1/2 such that for any

d < d1(€e1), any x € St, and any n € N, : "(_
S /, \
IS e _,>/ Flx — t) — F(x)| [Kn(B)] dt < e }~f¥+( {)
Gs §) Y

Lemma ™ e

For any fixed § > 0 and e; > 0, there exists some Nx(6, €2) such
that for n > Na(J, €2) and any x € S*, we have

th!f—-’/KH f(x —t) — F(x)||Kn(t)] dt < €.

€€,8) e

We prove the second of these.
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Proof of main technical result

\

First observation:

9= -FMS K= jwffv)m)q

'2
a

Then combine that with def|n|t|on of (f x K,)(x) and two
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Proof of the Inversion Theorem

Inversion Theorem. For f € L%(SY), if fy is the Nth 1( I}

Fourier polynomial of f, then

lim || — fu =
Jim 17 = full =0,

where convergence is in the L? norm.

Suppose f € L2(S!) and € > 0.
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Extra Derivative Lemma

Lemma
If g € L?(S1), then the two-sided series

%% (271”,) &(n)

converges absolutely (as a series of complex numbers).
Proof:



C! uniform convergence

Theorem
Suppose f € CY(SY). Then the Fourier series of f converges
absolutely and uniformly to f.

Proof: We first show that the Fourier series of f converges
absolutely and uniformly to some g € CO(S!). (This is on PS09.)

Therefore, for all n € Z, g(n) = f(n). However, then implies that
f = g a.e.,, and since both f and g are continuous, measure 0 stuff
implies that f = g everywhere.



Summary

L2 inversion theorem: If f € L2(S!), then the Fourier series of f
converges to f in the L? metric.

C! inversion theorem: If f € C'(S?!), then the Fourier series of f
converges absolutely and uniformly to f.



