Math 131B, Wed Nov 04

We have class on Mon Nov 09, but will not meet on Wed Nov 11.
We *will* have a problem session on Fri Nov 13.
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Use a laptop or desktop with a large screen so you can read
these words clearly.

In general, please turn off your camera and mute yourself.

Exception: When we do groupwork, please turn both your
camera and mic on. (Groupwork will not be recorded.)

Please always have the chat window open to ask questions.
Reading for today: 8.3. Reading for Mon: 8.4.
PS08 due today; PS09 outline due Mon.

Problem session, Fri Nov 06, 10:00-noon on Zoom.

PS8 & O0q




Recap: Two tools

(for proving Fundamental Theorem of Fourier Series and beyond)

First is convolutions:

Definition
For f,g € CO(S'), the convolution f x g : S' — C is defined by
the formula

1
(fxg)(x) = /0 f(x —t)g(t)dt.

Second goes hand in hand with convolutions: Dirac kernels.
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Wishful thinking: What is a Dirac kernel?

BEGIN WISHFUL THINKING
Suppose there existed a Dirac delta function ¢(x) such that for

fe Cost), /
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/ d(x)f(x) dx = £(0).
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To prove I|m f =, suppose we can find K, such that

fx K, _f and lim K, =246. Then:

n—o00 (W|shfully thinking lim commutes w/ *)

..mf_l.m f¥k,= ‘H‘I'Mk ~ { K¢
n=7X)
END WISHFUL THINKIN(?\ — {

We now use that idea to motivate a rigorous defn.




Dirac kernels

Definition
A Dirac kernel on S! is a sequence of continuous functions

Kn: [-3,3] — R such that
1

1. Forall nand all x € [—5, %] Kn(x) > 0. (Nonnegative

y=ho

1/2
2. For all n, / Kn(x)dx =1; and (Total area 1)
~1/2

3. For any fixed 6 > 0, we have _J

n—o0

(Concentrated at 0) lim / Ka(x) dx = 0. -S 0 € \fz.
o< x| %

l.e., for 6 > 0 and € > 0, there exists some N(¢) such that for

-g ‘gin > N(e), we have

0
1—e</ Kn(x) dx < 1.
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A near-example and an example: Dirichlet kernel and Fejér
kernel

Example | (Wr‘ I Ser.

The Dirichlet kernel {Dy | N > 0} is )
. A%, ~f,
Dn(x) = Y en(x).

Example n=—N
The Fejér kernel {Fy | N > 1} is -{% F

Fulx) = Do(x) + N+ Dn-1(x) _Fo_‘ . ‘_‘{ g

Dirichlet kernel looks good at first, but as it turns out, only Fejér
has the analytic properties we need to be a Dirac kernel.
To Maple!




Algebraic properties of Dirichlet and Fejér kernels

Theorem
For f € CO(SY), f x Dy = fn, the Nth Fourier polynomial of f, and

(F  Fa)(x) = R+ " ) s (x)
the average of the Fourier polynomials fy, ..., fy_1. '/
Proof: PS09.

Definition

The above sum sy(x) = (f * Fy)(x) is called the Nth Cesaro sum
of the Fourier series of f.

Av;s ke Sonv
S\ywer bwl > maather



Handy and remarkable summation formulas

Lemma
For x € S, n>0, and N > 1, we have that

sin((2n + 1)7x)

D)= sin(ma) X7
2n+1 if x = ‘

. ( Z
1sin®(N7x) . —_ £ -
= ST i Zx =

Fux) = d N sim(me) 70 = X—2
N ifx =0.

Proof uses clever arguments with geometric series, but we mostly
just care that the result is true.
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The Fejér kernel Fy is a Dirac kernel

3 things to check:
‘%Iflonnegative) Fn(x) > 0 for all x.

2. (Area 1) PS09 shows: For all N,

1/2
/ Frn(x)dx = 1.

-1/2

3. (Concentrated at 0) PS09 shows: For any § > 0,
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Next steps (% '-f-) F
We next prove: / (@[ . ;/\

Theorem
If {Kn} is a Dirac kernel, and f € C°(St), then

lim (f %« Kn)(x) = f(x),

N—oo

where convergence is uniform on S*.

This shows that the Césaro sums of the Fourier polynomials of f
converge uniformly to f.

(Note: That's not true of the Fourier polynomials themselves,
which might diverge on, say, some uncountable set of measure
zero.) (the Hilbert space stuff)

We will then add that fact to the theoretical framework that we
developed in Ch. 7 to show that the Fourier polynomials of f
converge to f in the L? metric.



