Math 131B, Mon Nov 02

- Use a laptop or desktop with a large screen so you can read these words clearly.
- In general, please turn off your camera and mute yourself.
- Exception: When we do groupwork, please turn both your camera and mic on. (Groupwork will not be recorded.)
- Please always have the chat window open to ask questions.
- Reading for today: 8.1-8.2. Reading for Wed: 8.3.
- PS08 outline due today, full version due Wed.
- Problem session, Fri Nov 06, 10:00-noon on Zoom.

Next week: We meet only on Mon Nov 9; Wed Nov 11 is Veterans Day. Exam 2 is back; revise errors to recover (1/4) of missing points.

Isomorphism Theorem for (generalized) Fourier Series

$=\mathcal{H}$ Hilbert space, $\mathcal{B}=\left\{u_{n} \mid i \in \mathbb{N}\right\} \subset \mathcal{H}$ orthogonal set of nonzero

($\left.{ }^{(1)}\right)^{\text {jectors. }}$

Theorem

TFAE:

1. \mathcal{B} is an orthogonal basis for \mathcal{H}.
2. (Parseval 1) For any $f, g \in \mathcal{H},\langle f, g\rangle=\sum_{n=1}^{\infty} \hat{f}(n) \overline{\hat{g}(n)}\left\langle u_{n}, u_{n}\right\rangle$.
3. (Parseval 2) For any $f \in \mathcal{H},\|f\|^{2}=\sum_{n=1}^{\infty}|\hat{f}(n)|^{2}\left\langle u_{n}, u_{n}\right\rangle$.
4. For any $f \in \mathcal{H}$, if $\left\langle f, u_{n}\right\rangle=0$ for all $n \in \mathbb{N}$, then $f=0$.

Sp. case: If $\left\{e_{n} \mid n \in \mathbb{Z}\right\}$ orthonormal basis for \mathcal{H}, then for $f \in \mathcal{H}$,
$e_{h}(x)=e^{\prime \operatorname{\nabla in} x} \quad\|f\|^{2}=\sum_{n \in \mathbb{Z}}|\hat{f}(n)|^{2}$.
$\left.S_{\text {case }}\right) \phi=L^{2}\left(S^{\prime}\right)$
Once we show $\left\{e_{n} \mid n \notin \mathbb{Z}\right\}$ is
an outhon basis, we get:

$$
\int_{0}^{1}|f(x)|^{2} d_{x}=\|f\|^{2}=\sum_{n \in \mathbb{Z}} \mid \hat{f}(n) \|^{2}
$$

Another interpretation of Isomorphism Theorem for Fourier Series: This says that any Hilbert space with an orthogonal basis is "isomorphic to" the
Hilbert space ${ }^{\text {Hiopertseace }} l^{2}(\mathbb{Z})=\left\{\left.a_{n}\left|\sum\right| a_{n}\right|^{2}<\infty\right\}$.

Recap: Fundametal defns and facts

- $L^{2}\left(S^{1}\right)$ is a Hilbert space. (Lebesgue Axiom 5.)
- Let $\mathcal{B}=\left\{e_{n} \mid n \in \mathbb{Z}\right\}$ in $L^{2}\left(S^{1}\right)$, where $e_{n}(x)=e^{2 \pi i n x}$. We know that \mathcal{B} is orthonormal.
- For $f \in L^{2}\left(S^{1}\right)$ and $n \in \mathbb{Z}$, nth Fourier coefficient is:

$$
\hat{f}(n)=\left\langle f, e_{n}\right\rangle=\int_{0}^{1} f(x) \overline{e_{n}(x)} d x
$$

- Nth Fourier polynomial of f is projection of f onto $\left\{e_{-N}, \ldots, e_{N}\right\}$, i.e.,

$$
f_{N}(x)=\sum_{n=-N}^{N} \hat{f}(n) e_{n}(x)
$$

- Fourier series of \mathcal{F} is

$$
\lim _{N \rightarrow \infty} f_{N}(x)=\sum_{n \in \mathbb{Z}} \hat{f}(n) e_{n}(x)
$$

By deft, $\sum_{n \in \mathbb{Z}} f(n) e_{n}(x)$ is syne sum (Tho in L', all roue is abs lute, by HS ACT, so sync sum $=$ reg sum $)$ See Analysis I book, or Appendix A of textbook, for more about the order of
summation of a series. Key principle: Absolutely convergent series can be summed in any order with the same result.

Recap: More of what we know

$\rightarrow\|f-f\|<\|p-f\|$ whenever p is a trig poly of degree N.

- Best Approximation Theorem: For any $f \in L^{2}\left(S^{1}\right), f_{N}$ (the N th Fourier polynomial of f) is the trigonometric polynomial of degree N that is closest to f in the L^{2} metric.
- Always Better Theorem: For $K \leq N, f_{N}$ is closer to f in L^{2} than f_{K} is.
- Bessel's inequality: We always have $\left\|f_{N}\right\| \leq\|f\|$.

Note: While the above results end up being useful, we will actually need to get our hands dirty with ϵ and δ. Coming up....

The main goal now

We want to prove that $\left\{e_{n}\right\}$ is an orthonormal basis for $L^{2}\left(S^{1}\right)$. More precisely:
Theorem (Inversion Theorem for Fourier Series)
For any $f \in L^{2}\left(S^{1}\right)$,

$$
f=\sum_{n \in \mathbb{Z}} \hat{f}(n) e_{n}
$$

where convergence on the RHS, above, is in the L^{2} metric. In terms of pointwise con Verg ehle: Theorem XA If $f \in C^{1}\left(S^{1}\right)$, then the Fourier series of f converges absolutely and uniformly to f.
These will take some hard work! But also two tools: Convolution, and kernel functions.

Nol $\#$ means: $\left(\sum_{n \in \mathbb{Z}} \mathcal{F} / n \mid e_{1}=\lim _{N \rightarrow A^{0--N}} \sum_{N}^{N} \mathcal{F}(n) x_{n}\right)$

$$
\begin{aligned}
& \lim _{N \rightarrow \infty}\| \| \\
& \lim _{N \rightarrow \infty} \underbrace{\left.\sum_{n=-N}^{N} \hat{f}(n) e_{n}\right)-f \|^{2}}_{\int_{\text {avg sq.error }}^{N}} \underbrace{\left.\left(\sum_{n=N}^{N} \hat{f}(n) e_{n}(x)\right)-f(x)\right)^{2} d x=0}_{f_{N}(x)}=0
\end{aligned}
$$

No $2(A \mathbb{R}) \cdot$ Given $A C S^{\prime}, A_{\text {meas. }}$ \exists cont $f^{\prime} S^{\prime} \rightarrow \mathbb{C} S$.
Fourier series of Fdiverges on fl. So cant expect much better than (8)

Convolutions

Back to Riemann integration world for now:

Definition

For $f, g \in C^{0}\left(S^{1}\right)$, the convolution $f * g: S^{1} \rightarrow \mathbb{C}$ is defined by the formula

$$
(f * g)(x)=\int_{0}^{1} f(x-t) g(t) d t .
$$

Not obvious that this should be useful! But this turns out to be a kind of product on functions in $C^{0}\left(S^{1}\right)$.

Properties of convolution

Theorem
For $f, f_{i}, g, g_{i} \in C^{0}\left(S^{1}\right)$ and $c_{i} \in \mathbb{C}$:

1. $f * g \in C^{0}\left(S^{1}\right)$
2. We have:

pso8

$$
\begin{aligned}
\left(c_{1} f_{1}+c_{2} f_{2}\right) * g & =c_{1}\left(f_{1} * g\right)+c_{2}\left(f_{2} * g\right) \\
f *\left(c_{1} g_{1}+c_{2} g_{2}\right) & =c_{1}\left(f * g_{1}\right)+c_{2}\left(f * g_{2}\right)
\end{aligned}
$$

3. $(f * g)(x)=(g * f)(x)$.
4. $((f * g) * h)(x)=(f *(g * h))(x)$. (\& S) ロ ! !
5. For $f \in C^{1}\left(S^{1}\right)$, we have $f * g \in C^{1}\left(S^{1}\right)$ and

$$
\frac{d}{d x}((f * g)(x))=\left(\frac{d f}{d x} * g\right)(x) . \quad \text { PSO }
$$

l.e., convolution with f transfers the smoothness properties of f to f * g.

Meaning of convolution

Most important property of convolution:

$$
\widehat{f * g}(n)=\hat{f}(n) \hat{g}(n)
$$

I.e., convolution corresponds to multipilication of Fourier coefficients. This formula implies that when you combine f and g to form $f * g$:

- f and g reinforce $f * g$ at frequencies they have in common.
- f and g dampen $f * g$ in frequencies where one or more of them have $\hat{f}(n)=0$.

Application: If the signal f consists of the tones that resonate in some location (say, Cathedral of Notre Dame), the convolution f * g sounds like you played the signal g inside Cathedral of Notre Dame.

Example proof
Thy: $f * g=g * f$

Sub $u=x-t \quad d u=-d t \quad \begin{aligned} & t=x-y \\ & t=0 \\ & =x-1\end{aligned}$

$$
\text { So } \left.\begin{array}{rl}
(f & * g)(x)
\end{array}=\int_{x}^{x-1} f(u) g(x-u)(-d u) u^{n=x-1}, ~=\int_{x-1}^{x} f(u) g(x-u) d u\right) \text { Peididicity }
$$

$$
\begin{aligned}
& =\int_{0}^{1} g(x-u) f(u) d u \quad L^{\text {offgon } s n_{1}} \\
& =\left(y^{*} f\right)(x)
\end{aligned}
$$

Recall: $h: S^{\prime} \rightarrow \mathbb{C}$

$$
\int_{0}^{1} h(x) d x=\int_{-\frac{1}{2}}^{1} h(x) d x=\int_{\pi}^{\pi+1} h(x) d x
$$

$$
\begin{aligned}
& \text { Ex Prove }(f * g) * h=f *(g * h) \text {. } \\
& \left.\left.\left(\left(-F_{*}\right)\right)^{2}\right)+h\right)(x)
\end{aligned}
$$

$\sqrt{1}$ Fnbini!

$$
\begin{aligned}
& =\int_{0}^{1} \int_{0}^{1} f(x-u-t) g(t) h(u) d u d t \\
& \quad|\mid \operatorname{sut} s t \cdot v=u+t \\
& =\int_{0}^{1} f(x-v)\left(\int_{0}^{1} g(v-u)(v)\right. \\
& =(f *(g * h))(x)
\end{aligned}
$$

Start of 8.2.7

Thm: $\widehat{f * g}(n)=\hat{f}(n) \hat{g}(n)$.
$\widehat{f * g}(n)=$

