Math 131B, Mon Nov 02

- Use a laptop or desktop with a large screen so you can read these words clearly.
- In general, please turn off your camera and mute yourself.
- Exception: When we do groupwork, please turn both your camera and mic on. (Groupwork will not be recorded.)
- Please always have the chat window open to ask questions.
- Reading for today: 8.1–8.2. Reading for Wed: 8.3.
- PS08 outline due today, full version due Wed.
- Problem session, Fri Nov 06, 10:00–noon on Zoom.

Next week: We meet only on Mon Nov 9; Wed Nov 11 is Veterans Day. Exam 2 is back; revise errors to recover (1/4) of missing points. Isomorphism Theorem for (generalized) Fourier Series

 \mathcal{H} Hilbert space, $\mathcal{B} = \{u_n \mid i \in \mathbb{N}\} \subset \mathcal{H}$ orthogonal set of nonzero

Theorem TFAE:

vectors.

IP space, complete in L

 ∞

・ロト ・ 国 ト ・ ヨ ト ・

1. \mathcal{B} is an orthogonal basis for \mathcal{H} .

2. (Parseval 1) For any
$$f, g \in \mathcal{H}$$
, $\langle f, g \rangle = \sum_{n=1}^{\infty} \hat{f}(n) \overline{\hat{g}(n)} \langle u_n, u_n \rangle$.

3. (Parseval 2) For any
$$f \in \mathcal{H}$$
, $\|f\|^2 = \sum_{n=1}^{\infty} \left|\hat{f}(n)\right|^2 \langle u_n, u_n \rangle$.

4. For any $f \in \mathcal{H}$, if $\langle f, u_n \rangle = 0$ for all $n \in \mathbb{N}$, then f = 0.

Sp. case: If $\{e_n \mid n \in \mathbb{Z}\}$ orthonormal basis for \mathcal{H} , then for $f \in \mathcal{H}$, $f(n) = \sum_{n \in \mathbb{Z}} |\hat{f}(n)|^2$.

17= L2(S') Once we show Sen InFZ is in orthon basis, we get: $\int_{0}^{1} |F(x)|^{2} dx = \|F\|^{2} = \sum_{n \in \mathcal{F}} |F(n)|^{2}$

Another interpretation of Isomorphism Theorem for Fourier Series:

This says that any Hilbert space with an orthogonal basis is "isomorphic to" the Hilbert space

 $l^2(Z) = \{a_n \mid \geq |a_n|^2 < \infty\}$

Recap: Fundametal defns and facts

- $L^2(S^1)$ is a Hilbert space. (Lebesgue Axiom 5.)
- ▶ Let $\mathcal{B} = \{e_n \mid n \in \mathbb{Z}\}$ in $L^2(S^1)$, where $e_n(x) = e^{2\pi i n x}$. We know that \mathcal{B} is orthonormal.
- For $f \in L^2(S^1)$ and $n \in \mathbb{Z}$, *n*th Fourier coefficient is:

$$\hat{f}(n) = \langle f, e_n \rangle = \int_0^1 f(x) \,\overline{e_n(x)} \, dx$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Nth Fourier polynomial of f is projection of f onto {e_{-N},..., e_N}, i.e.,

$$f_N(x) = \sum_{n=-N}^{N} \hat{f}(n) e_n(x).$$
Fourier series of f is
$$\lim_{N \to \infty} f_N(x) = \sum_{n \in \mathbb{Z}} \hat{f}(n) e_n(x).$$

(The in L', all conr is absolute, by HSACT, so sync Inm=reg sum)

See Analysis I book, or Appendix A of textbook, for more about the order of summation of a series. Key principle: Absolutely convergent series can be summed in any order with the same result.

Recap: More of what we know

 $\|f_N - \{\| \leq \|p - f\|$ whenever p is a trig poly of degree N.

- Best Approximation Theorem: For any $f \in L^2(S^1)$, f_N (the Nth Fourier polynomial of f) is the trigonometric polynomial of degree N that is closest to f in the L^2 metric.
- ▶ Always Better Theorem: For $K \le N$, f_N is closer to f in L^2 than f_K is.
- ▶ Bessel's inequality: We always have $||f_N|| \le ||f||$.

Note: While the above results end up being useful, we will actually need to get our hands dirty with ϵ and δ . Coming up....

The main goal now

We want to prove that $\{e_n\}$ is an orthonormal basis for $L^2(S^1)$. More precisely:

Theorem (Inversion Theorem for Fourier Series) For any $f \in L^2(S^1)$, $f = \sum \hat{f}(n)e_n$,

where convergence on the RHS, above, is in the L^2 metric. In terms of pointwise conversion: CONVergence. Theorem RGIf $f \in C^1(S^1)$, then the Fourier series of f converges absolutely and uniformly to f.

 $n \in \mathbb{Z}$

These will take some hard work! But also two tools: **Convolution**, and **kernel functions**.

NOI & means: (ETILIE = I'm SP(m)r) $\lim_{N \to \infty} \left\| \left(\sum_{n=-N}^{N} \widehat{f}(n) e_n \right) - \widehat{f} \right\|^2 = 0$ $\lim_{N \to \infty} \int \left| \left(\sum_{n=1}^{N} \widehat{f}(n) e_n(x) \right) - f(x) \right|_{n=1}^{2} dx = 0$ $\int_{N} \left(\sum_{n=1}^{N} \widehat{f}(n) e_n(x) \right) - f(x) \right|_{n=1}^{2} dx = 0$

NOS2(AR) Given ACS, A measi ∃ contfist > C f. Fourier series of Fdiverges on A. So can't expect much better than (\$ \$)

Convolutions

Back to Riemann integration world for now:

Definition For $f, g \in C^0(S^1)$, the convolution $f * g : S^1 \to \mathbb{C}$ is defined by the formula $(f * g)(x) = \int_0^1 f(x - t)g(t) dt.$

Not obvious that this should be useful! But this turns out to be a kind of product on functions in $C^0(S^1)$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Properties of convolution

Theorem
For
$$f, f_i, g, g_i \in C^0(S^1)$$
 and $c_i \in \mathbb{C}$:
1. $f * g \in C^0(S^1)$
2. We have:
 $(c_1f_1 + c_2f_2) * g = c_1(f_1 * g) + c_2(f_2 * g),$
 $f * (c_1g_1 + c_2g_2) = c_1(f * g_1) + c_2(f * g_2).$
3. $(f * g)(x) = (g * f)(x).$
4. $((f * g) * h)(x) = (f * (g * h))(x).$
5. For $f \in C^1(S^1)$, we have $f * g \in C^1(S^1)$ and
 $\frac{d}{dx}((f * g)(x)) = (\frac{df}{dx} * g)(x).$

I.e., convolution with f transfers the smoothness properties of f to f * g.

Meaning of convolution

Most important property of convolution:

$$\widehat{f \ast g}(n) = \widehat{f}(n)\widehat{g}(n).$$

I.e., convolution corresponds to multiplication of Fourier coefficients. This formula implies that when you combine f and g to form f * g:

- f and g reinforce f * g at frequencies they have in common.
- f and g dampen f * g in frequencies where one or more of them have $\hat{f}(n) = 0$.

Application: If the signal f consists of the tones that resonate in some location (say, Cathedral of Notre Dame), the convolution f * g sounds like you played the signal g inside Cathedral of Notre Dame.

PSOD

 $= \int_{\partial}^{1} g(x - u) f(u) du \qquad \int^{of f,g \text{ on } S^{n}} f(y) du \qquad \int^{1} f(y)$ (・・・) (・・・) $\begin{array}{l} \operatorname{Becall} & h & \leq 1 \rightarrow 0 \\ \int_{0}^{1} h(x) dx &= \int_{-\frac{1}{2}}^{1} h(x) dx &= \int_{0}^{1} h(x) dx \\ & = \int_{0}^{1} h(x) dx &= \int_{0}^{1} h(x) dx \\ & = \int_{0}^{1} h(x) dx \\ & =$

些 Prove (f*g)*h=f*lg*h). $(ff \star g) \star h|(x)$ $= \int_{0}^{1} \left(\int_{0}^{1} f((x-\alpha)-t)g(t) dt \right) h(\alpha) d\alpha$ $(t \star g)(x-\alpha) \qquad \text{inner}^{1} \eta$ $= \int_{0}^{1} \int_{0}^{1} f(x-\alpha-t)g(t)h(\alpha) dt d\alpha$ $\times_{0}^{1} g(t)h(\alpha) dt d\alpha$

Start of 8.2.7

Thm:
$$\widehat{f * g}(n) = \widehat{f}(n)\widehat{g}(n).$$

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = のへで

$$\widehat{f \ast g}(n) =$$

-