Dirichlet sequence:
$>\operatorname{plot}([\operatorname{seq}(\sin (2 * P i *(2 * N+1) * x / 2) / \sin (2 * P i * x / 2), N=6 \ldots 36,10)], x=$ -0.5..0.5);

FFejer sequence:
$>\operatorname{plot}\left(\left[\operatorname{seq}\left((1 / N) *(\sin (2 * P i * N * x / 2) / \sin (2 * P i * x / 2))^{\wedge} 2, N=6 \ldots 36,10\right)\right], x=\right.$ -0.5..0.5);

Dirichlet sequence, later on:
$>\operatorname{plot}(\sin (2 * \operatorname{Pi} *(2 * 500+1) * x / 2) / \sin (2 * \operatorname{Pi} * x / 2), x=-0.5 .0 .5)$;

(Note that apparent density of graph is just an artifact of whether number of sample points Maple takes between -0.5 and 0.5 "resonates" with N .)

In fact, for any fixed value of $\mathrm{x}, \mathrm{D} _\mathrm{N}(\mathrm{x})$ diverges as N goes to infinity, for reasons similar to those found in Problem 1.1.2 (!), which actually deals with a +/- variant on D_N(x).

