Math 131B, Mon Oct 26

- Use a laptop or desktop with a large screen so you can read these words clearly.
- In general, please turn off your camera and mute yourself.
- Exception: When we do groupwork, please turn both your camera and mic on. (Groupwork will not be recorded.)
- Please always have the chat window open to ask questions.
- Reading for today: 7.5. Reading for 7.6.
- PS07 outline due today, full version due Wed.
- Problem session Fri Oct 30, 10:00-noon on Zoom.

Review of measure zero

Definition
To say that $E \subseteq \mathbb{R}$ has measure zero means that for any $\epsilon>0$, there exists some open cover $\left\{U_{i}\right\}$ of E such that $\sum_{i=1}^{\infty} \ell\left(U_{i}\right)<\epsilon$.
Example. If $E=\left\{x_{i}\right\}$ is a countable subset of \mathbb{R}, then E has measure zero.
PS07: If each E_{i} has measure zero, then $\bigcup_{i=1}^{\infty} E_{i}$ has measure zero.

A technical lemma

Lemma

(A, B) open int in $\mathbb{R},\left\{U_{i}\right\}$ countable collection of open int in
(A, B). There exists a countable collection $\left\{V_{j}\right\}$ of bounded open int st.:

1. (Disjoint) For $j \neq k, V_{j} \cap V_{k}=\emptyset$;
2. (Union) $\bigcup_{j=1}^{\infty} V_{j}=\bigcup_{i=1}^{\infty} U_{i}$; and
3. (Shorter) $\sum_{j=1}^{\infty} \ell\left(V_{j}\right) \leq \sum_{i=1}^{\infty} \ell\left(U_{i}\right)$.

$$
1,-1,
$$

Picture:

A set of measure zero can't contain an interval

Theorem
If E is a set of measure zero, and (a, b) is any open interval in \mathbb{R}, then (a, b) is not contained in E.

Proof:

By contradiction, suppose E has measure 0 , and (a, b) contained in E .
Choose an open cover of E, the sum of whose lengths add up to $<(b-a) / 2$.
If you only consider the parts of that open cover that are in (a, b), we get an open cover of (a, b), the sum of whose lengths adds up to $<(b-a) / 2$.

Either this green cover (from Lemma) must be (a, b), contradiction; or there's at least one point missing, contradiction.

Continuous and equal a.e. means equal
The set of x s.t. $f(x)$ is not equal to $g(x)$ has measure zero.
Corollary
Suppose $X=[a, b]$ or \mathbb{R} and for Some $f, g: X \rightarrow \mathbb{C}$, we have that $f(x)=g(x)$ for almost all $x \in X$. Then for $c \in X$, if f and g are continuous at c, then $f(c)=g(c)$.
Proof: ABC f(c) $\neq g(c)$

Let $X=[a, b]$ or S^{1}.
We have seen already that $C^{0}(X)$ has "holes" in it w.r.t. the L^{2} metric. We will assume that there exists a larger space of functions with the following properties (roughly speaking): Lebesgue Axiom 1: The function space $\mathcal{M}(X)$ contains almost all examples encountered in practice. For any $f \in \mathcal{M}(X), \int_{X}|f|$ is a well-defined nonnegative extended real number (i.e., the integral could have value $+\infty$).
Lebesgue Axiom 2: The Lebesgue integral $\int_{X} f$ is well-defined on the space $L^{1}(X)$ of all $f \in \mathcal{M}(X)$ such that $\int_{X}|f|<\infty$. It extends the Riemann integral and has similar formal properties. Lebesgue Axiom 3: The Lebesgue integral $\int_{X} f$ is unaffected by changing the values of f on a set of measure zero.

Lebesgue Axiom 4: Unlike the Riemann integral, the Lebesgue integral satisfies the monotone and dominated convergence properties.
Lebesgue Axiom 5: The function space $L^{2}(X)$ is an inner product space that is complete in the L^{2} metric.
Lebesgue Axiom 6: Continuous functions (or continuous functions with compact support, for $X=\mathbb{R}$) are dense in $L^{2}(X)$.
to be reviewed/explained later

Lebesgue Axiom 1

$\mathcal{M}(X)$ is the space of measurable functions on X and:'

1. (Riemann integrable implies measurable) If $f: X \rightarrow \mathbb{C}$ is Riemann integrable on every closed and bounded subinterval of X, then f is measurable.
2. (Closed under algebraic operations) If $f, g \in \mathcal{M}(X)$, then $f(x) g(x), \overline{f(x)}$, and $|f(x)|$ are measurable (and also $f(x)+g(x)$ and $c f(x)$ for $c \in \mathbb{C})$.
3. (Closed under limits) If $f(x)=\lim _{n \rightarrow \infty} f_{n}(x)$ and each very $f_{n} \in \mathcal{M}(X)$, then $f \in \mathcal{M}(X)$.
4. (Nonnegative integral) If $f \in \mathcal{M}(X)$ and f is real-valued and nonnegative, then there exists $\int_{X} f$ in $\mathbb{R} \cup\{+\infty\}$ called the Lebesgue integral of f on X.
5. (Monotonicity) For real-valued nonnegative $f, g \in \mathcal{M}(X)$, if $f(x) \leq g(x)$ for all $x \in X$, then $\int_{X} f \leq \int_{X} g$.

Lebesgue integrable functions
Concrete way of looking at integral of measurable function: we include certain kinds of improper integrals.
Definition

To say that $f: X \rightarrow \mathbb{C}$ is Lebesgue integrable, or simply integrable, means that $f \in \mathcal{M}(X)$ and $\int_{X}|f|$ is finite. We also define $L^{1}(X)$ to be the set of all Lebesgue integrable functions on X. More generally, for finite $p \geq 1$, we define $L^{p}(X)$ to be the set of all $f \in \mathcal{M}(X)$ such that $\int_{X}|f|^{p}$ is finite.

$$
L^{2}(x)=\left\{\left.t\left|S_{x}^{x}\right| t\right|^{2}<\infty\right\}
$$

Lebesgue Axiom 2

$L^{1}(X)$ subspace, and for $f \in L^{1}(X)$, there exists Lebesgue integral $\int_{X} f$ s.t.:

1. (Extends nonnegative integral) If $f \in L^{1}(X)$ and f is real and nonnegative, then $\int_{X} f$ has the same value as before.
2. (Extends Riemann integral) If $f: X \rightarrow \mathbb{C}$ is Riemann integrable on some $[a, b] \subseteq X$ and $f(x)=0$ for all $x \notin[a, b]$, then $f \in L^{1}(X)$ and $\int_{X} f=\int_{a}^{b} f(x) d x$.
3. (Linearity) If $f, g \in L^{1}(X)$ and $a, b \in \mathbb{C}$, then $\int_{X} a f+b g=a \int_{X} f+b \int_{X} g$.
4. (Additivity of domain) If $X=[a, b], Y=[b, c]$, and $Z=[a, c]$, and $f \in L^{1}(X)$ and $f \in L^{1}(Y)$ when restricted to those domains, then $\int_{Z} f=\int_{X} f+\int_{Y} f$.

Also:
(Conjugates and absolute value) If $f \in L^{1}(X)$, then $\int_{X} \bar{f}=\overline{\int_{X}} f$ and $\left|\int_{X} f\right| \leq \int_{X}|f|$.
(triangle inequality for integrals)

Upshot of Axiom 2: We can do computations with Lebesgue integral as if it were Riemann integral.

Lebesgue Axiom 3

For any $f \in \mathcal{M}(X)$, we have following properties of $\int_{X} f$, either in the complex sense or the nonnegative sense.

1. (Up to measure zero) If $f=g$ almost everywhere in X, then g is also measurable; and if we also have that $f \in L^{1}(X)$, then $g \in L^{1}(X)$ and $\int_{X} f=\int_{X} g$. In other words, $\int_{X} f$ is "only defined up to sets of measure zero."
2. (Zero integral of nonnegative implies zero a.e.) If f is real-valued and nonnegative and $\int_{X} f=0$, then $f=0$ almost everywhere in X.

$$
\text { Ex. } f(x)= \begin{cases}1 & x \in \mathbb{Q} \\ 0 & x \notin \mathbb{Q}\end{cases}
$$

$$
\int_{0,17} f=0
$$

Lebesgue Axiom 4

Compare the two NOs having to do with integrals.

Let $f_{n}: X \rightarrow \mathbb{C}$ be a sequence in $\mathcal{M}(X)$, and let $f: X \rightarrow \mathbb{C}$ be a function such that $\lim _{n \rightarrow \infty} f_{n}(x)=f(x)$ a.e. in X.

1. (Monotone convergence) If the f_{n} are nonnegative real measurable and $f_{n}(x) \leq f_{n+1}(x)$ for all $x \in X$, then $\int_{X} f=\lim _{n \rightarrow \infty} \int_{X} f_{n}$.
2. (Dominated convergence) If there exists some Lebesgue integrable $g: X \rightarrow \mathbb{R}$ such that $\left|f_{n}(x)\right| \leq g(x)$ for all $n \in \mathbb{N}$ and $x \in X$, then $\int_{X} f=\lim _{n \rightarrow \infty} \int_{X} f_{n}$. (This is called "dominated convergence" because $g(x)$ dominates each $\left.f_{n}(x).\right)$

Example

Let $X=[1,+\infty]$, and let $f, f_{n}: X \rightarrow \mathbb{R}(n \in \mathbb{N})$ be defined by

$$
f(x)=\frac{1}{x^{2}}, \quad f_{n}(x)= \begin{cases}\frac{1}{x^{2}} & \text { if } x \leq n \\ 0 & \text { if } x>n\end{cases}
$$

Prove that f is measurable, f is Lebesgue integrable on X, and
$\int_{X} f=1$.

f measurable: Each $f(n(x)$ is Riemann integrable on any finite interval, so each measurable ($\mathrm{A} \times 1$).

$$
\begin{aligned}
& \text { Wite: } f_{n-1}(x) \geq f_{n}(x) \text {, so use Mono } \\
& \text { Conv }(A x 4) \text {. So: } \\
& \qquad \int_{x} f=\lim _{n \rightarrow \infty} \int_{1}^{n} \frac{1}{x^{2}} \\
& =\lim _{n \rightarrow \infty} \int_{1}^{n} x^{-2} d x=\text { Rice } \\
& \left.=\lim _{n \rightarrow \infty}-x^{-1}\right]_{1}^{n}=\lim _{n \rightarrow \infty}^{m}\left(-\frac{1}{n}+1\right)=1 .
\end{aligned}
$$

$L^{2}(X)$ as an inner product space

Theorem
Let $X=[a, b], S^{1}$, or \mathbb{R}. Then $L^{2}(X)$ is a function space, and

$$
\langle f, g\rangle=\int_{X} f(x) \overline{g(x)}
$$

is an inner product on $L^{2}(X)$.

Lebesgue Axioms 5 and 6

Lebesgue Axiom 5: $L^{2}(X)$ is complete in the L^{2} metric.

Lebesgue Axiom 6: If $X=[a, b]$ or S^{1}, then $C^{0}(X)$ is a dense subset of $L^{2}(X)$. In other words, for every $f \in L^{2}(X)$ and every $\epsilon>0$, there exists some $g \in C^{0}(X)$ with $\|f-g\|<\epsilon$.

Recap

Lebesgue Axiom 1: The function space $\mathcal{M}(X)$ contains almost all examples encountered in practice. For any $f \in \mathcal{M}(X), \int_{X}|f|$ is a well-defined nonnegative extended real number (i.e., the integral could have value $+\infty$).
Lebesgue Axiom 2: The Lebesgue integral $\int_{X} f$ is well-defined on the space $L^{1}(X)$ of all $f \in \mathcal{M}(X)$ such that $\int_{X}|f|<\infty$. It extends the Riemann integral and has similar formal properties. Lebesgue Axiom 3: The Lebesgue integral $\int_{X} f$ is unaffected by changing the values of f on a set of measure zero. Lebesgue Axiom 4: Unlike the Riemann integral, the Lebesgue integral satisfies the monotone and dominated convergence properties.

Lebesgue Axiom 5: The function space $L^{2}(X)$ is an inner product space that is complete in the L^{2} metric.
Lebesgue Axiom 6: Continuous functions (or continuous functions with compact support, for $X=\mathbb{R}$) are dense in $L^{2}(X)$.

