Math 131B, Mon Oct 26

- Use a laptop or desktop with a large screen so you can read these words clearly.
- In general, please turn off your camera and mute yourself.
- Exception: When we do groupwork, please turn both your camera and mic on. (Groupwork will not be recorded.)
- Please always have the chat window open to ask questions.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

- Reading for today: 7.5. Reading for Mar 7.6.
- PS07 outline due today, full version due Wed.
- Problem session Fri Oct 30, 10:00–noon on Zoom.

Definition

To say that $E \subseteq \mathbb{R}$ has **measure zero** means that for any $\epsilon > 0$, there exists some open cover $\{U_i\}$ of E such that $\sum_{i=1}^{\infty} \ell(U_i) < \epsilon$.

Example. If $E = \{x_i\}$ is a countable subset of \mathbb{R} , then E has measure zero.

PS07: If each E_i has measure zero, then $\bigcup_{i=1}^{i} E_i$ has measure zero.

・ロト ・四ト ・ヨト ・ヨト ・ヨ

A technical lemma

Lemma

(A, B) open int in \mathbb{R} , $\{U_i\}$ countable collection of open int in (A, B). There exists a countable collection $\{V_j\}$ of bounded open ints s.t.:

A set of measure zero can't contain an interval

Theorem If E is a set of measure zero, and (a, b) is any open interval in \mathbb{R} , Octu of m. O then (a, b) is not contained in E. **Proof:** By contradiction, suppose E has measure 0, and (a,b) contained in E. Choose an open cover of E, the sum of whose lengths add up to < (b-a)/2 If you only consider the parts of that open cover that are in (a,b), we get an open cover of (a,b), the sum of whose lengths adds up to < (b-a)/2. Either this green cover (from Lemma) must be (a,b), contradiction; or there's at least one point missing, contradiction.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Continuous and equal a.e. means equal

The set of x s.t. f(x) is not equal to g(x) has measure zero.

Corollary

Suppose X = [a, b] or \mathbb{R} and for some $f, g : X \to \mathbb{C}$, we have that f(x) = g(x) for almost all $x \in X$. Then for $c \in X$, if f and g are continuous at c, then f(c) = g(c).

Proof: $(f(c) \neq f(c))$

Cont => there is a nbd of c on which $f(x) \neq g(x)$. But set where f, g aren't equal has measure zero.

ac c 145

The Lebesgue integral

Let X = [a, b] or S^1 . We have seen already that $C^0(X)$ has "holes" in it w.r.t. the L^2 metric. We will **assume** that there exists a larger space of functions with the following properties (roughly speaking): **Lebesgue Axiom 1:** The function space $\mathcal{M}(X)$ contains almost all examples encountered in practice. For any $f \in \mathcal{M}(X)$, $\int_X |f|$ is a well-defined nonnegative extended real number (i.e., the integral could have value $+\infty$).

Lebesgue Axiom 2: The Lebesgue integral $\int_X f$ is well-defined on the space $L^1(X)$ of all $f \in \mathcal{M}(X)$ such that $\int_X |f| < \infty$. It extends the Riemann integral and has similar formal properties. **Lebesgue Axiom 3:** The Lebesgue integral $\int_X f$ is unaffected by changing the values of f on a set of measure zero.

Lebesgue Axiom 4: Unlike the Riemann integral, the Lebesgue integral satisfies the monotone and dominated convergence to be explained. properties. **Lebesgue Axiom 5:** The function space $L^2(X)$ is an inner product space that is complete in the L^2 metric. Lebesgue Axiom 6: Continuous functions (or continuous functions with compact support, for $X = \mathbb{R}$) are dense in $L^2(X)$. to be reviewed/explained later $|f| = \int |f|^2$ d(f,g) = | f - g|

日本《御》《周》《周》

X= [a,b) or R

 $\mathcal{M}(X)$ is the space of **measurable functions** on X and:

- 1. (Riemann integrable implies measurable) If $f : X \to \mathbb{C}$ is Riemann integrable on every closed and bounded subinterval of X, then f is measurable.
- 2. (Closed under algebraic operations) If $f, g \in \mathcal{M}(X)$, then f(x)g(x), $\overline{f(x)}$, and |f(x)| are measurable (and also f(x) + g(x) and cf(x) for $c \in \mathbb{C}$).
- 3. (Closed under limits) If $f(x) = \lim_{n \to \infty} f_n(x)$ and each very different! $f_n \in \mathcal{M}(X)$, then $f \in \mathcal{M}(X)$.
- 4. (Nonnegative integral) If $f \in \mathcal{M}(X)$ and f is real-valued and nonnegative, then there exists $\int_X f$ in $\mathbb{R} \cup \{+\infty\}$ called the Lebesgue integral of f on X.
- 5. (Monotonicity) For real-valued nonnegative $f, g \in \mathcal{M}(X)$, if $f(x) \le g(x)$ for all $x \in X$, then $\int_X f \le \int_X g$.

Lebesgue integrable functions

Concrete way of looking at integral of measurable function: we include certain kinds of improper integrals.

Definition

To say that $f: X \to \mathbb{C}$ is Lebesgue integrable, or simply integrable, means that $f \in \mathcal{M}(X)$ and $\int_X |f|$ is finite. We also define $L^1(X)$ to be the set of all Lebesgue integrable functions on X. More generally, for finite $p \ge 1$, we define $L^p(X)$ to be the set of all $f \in \mathcal{M}(X)$ such that $\int_X |f|^p$ is finite. $(\mathcal{L}(X) = \{f \mid \int \int |f|^p \otimes f(X) + \int f(X) \otimes f(X) \otimes f(X) + \int f(X) \otimes f(X) \otimes f(X) \otimes f(X) + \int f(X) \otimes f(X)$

 $L^{1}(X)$ subspace, and for $f \in L^{1}(X)$, there exists **Lebesgue** integral $\int_{X} f$ s.t.:

- 1. (Extends nonnegative integral) If $f \in L^1(X)$ and f is real and nonnegative, then $\int_X f$ has the same value as before.
- 2. (Extends Riemann integral) If $f : X \to \mathbb{C}$ is Riemann integrable on some $[a, b] \subseteq X$ and f(x) = 0 for all $x \notin [a, b]$, then $f \in L^1(X)$ and $\int_X f = \int_a^b f(x) dx$.
- 3. (Linearity) If $f, g \in L^1(X)$ and $a, b \in \mathbb{C}$, then $\int_X af + bg = a \int_X f + b \int_X g.$
- 4. (Additivity of domain) If X = [a, b], Y = [b, c], and Z = [a, c], and $f \in L^1(X)$ and $f \in L^1(Y)$ when restricted to those domains, then $\int_Z f = \int_X f + \int_Y f$.

Also:

(Conjugates and absolute value) If $f \in L^1(X)$, then $\int_X \overline{f} = \int_X f$ and $\left| \int_X f \right| \le \int_X |f|$.

(triangle inequality for integrals)

Upshot of Axiom 2: We can do computations with Lebesgue integral as if it were Riemann integral.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

For any $f \in \mathcal{M}(X)$, we have following properties of $\int_X f$, either in the complex sense or the nonnegative sense.

- 1. (Up to measure zero) If f = g almost everywhere in X, then g is also measurable; and if we also have that $f \in L^1(X)$, then $g \in L^1(X)$ and $\int_X f = \int_X g$. In other words, $\int_X f$ is "only defined up to sets of measure zero."
- 2. (Zero integral of nonnegative implies zero a.e.) If f is real-valued and nonnegative and $\int_X f = 0$, then f = 0 almost everywhere in X. EX. $f(x) = \begin{cases} 1 & x \in Q \\ 0 & x \notin Q \end{cases}$

Compare the two NOs having to do with integrals.

Let $f_n : X \to \mathbb{C}$ be a sequence in $\mathcal{M}(X)$, and let $f : X \to \mathbb{C}$ be a function such that $\lim_{n \to \infty} f_n(x) = f(x)$ a.e. in X.

1. (Monotone convergence) If the f_n are nonnegative real measurable and $f_n(x) \le f_{n+1}(x)$ for all $x \in X$, then $\int_X f = \lim_{n \to \infty} \int_X f_n.$

2. (Dominated convergence) If there exists some Lebesgue integrable $g: X \to \mathbb{R}$ such that $|f_n(x)| \le g(x)$ for all $n \in \mathbb{N}$ and $x \in X$, then $\int_X f = \lim_{n \to \infty} \int_X f_n$. (This is called "dominated convergence" because g(x) dominates each $f_n(x)$.)

Example

f measurable: Each $f_n(x)$ is Riemann integrable on any finite interval, so each f_n is measurable (Ax 1). f is the limit of measurable functions, so f is measurable (Ax 1).

Note: ful (x) ≥ fn(x), so use Mono (onv (Ax4). So: Rie $=\lim_{n\to\infty}\int$

$L^{2}(X)$ as an inner product space

Theorem

Let X = [a, b], S^1 , or \mathbb{R} . Then $L^2(X)$ is a function space, and

$$\langle f,g\rangle = \int_X f(x)\overline{g(x)}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

is an inner product on $L^2(X)$.

Lebesgue Axiom 5: $L^2(X)$ is complete in the L^2 metric.

Lebesgue Axiom 6: If X = [a, b] or S^1 , then $C^0(X)$ is a dense subset of $L^2(X)$. In other words, for every $f \in L^2(X)$ and every $\epsilon > 0$, there exists some $g \in C^0(X)$ with $||f - g|| < \epsilon$.

(日)(1)

Recap

Lebesgue Axiom 1: The function space $\mathcal{M}(X)$ contains almost all examples encountered in practice. For any $f \in \mathcal{M}(X)$, $\int_{Y} |f|$ is a well-defined nonnegative extended real number (i.e., the integral could have value $+\infty$). **Lebesgue Axiom 2:** The Lebesgue integral $\int_X f$ is well-defined on the space $L^1(X)$ of all $f \in \mathcal{M}(X)$ such that $\int_{-\infty}^{\infty} |f| < \infty$. It extends the Riemann integral and has similar formal properties. **Lebesgue Axiom 3:** The Lebesgue integral $\int_{Y} f$ is unaffected by changing the values of f on a set of measure zero. **Lebesgue Axiom 4:** Unlike the Riemann integral, the Lebesgue integral satisfies the monotone and dominated convergence properties.

Lebesgue Axiom 5: The function space $L^2(X)$ is an inner product space that is complete in the L^2 metric. **Lebesgue Axiom 6:** Continuous functions (or continuous functions with compact support, for $X = \mathbb{R}$) are dense in $L^2(X)$.