
Math 131B, Wed Oct 21

I Use a laptop or desktop with a large screen so you can read
these words clearly.

I In general, please turn off your camera and mute yourself.

I Exception: When we do groupwork, please turn both your
camera and mic on. (Groupwork will not be recorded.)

I Please always have the chat window open to ask questions.

I Reading for today: 7.4. Reading for Mon: 7.5.

I PS07 outline due Mon (not today).

I Problem session Fri Oct 16, 10:00–noon on Zoom.



Recap: Orthogonal sets and bases

Definition
Let V be an inner product space and let I be an index set. To say
that B = {ui | i ∈ I} ⊂ V is an orthogonal set means that for
i 6= j , ui and uj are orthogonal (i.e., 〈ui , uj〉 = 0).
To say that B = {ei | i ∈ I} ⊂ V is an orthonormal set means
that B is an orthogonal set and also, for every i ∈ I , 〈ei , ei 〉 = 1.

THE example: For V = C 0(S1) with usual L2 IP and
en(x) = e2πinx , {en(x) | n ∈ Z} is orthonormal.



Generalized Fourier polynomials and series
V an IP space, {un} an orthogonal set of nonzero vectors, f ∈ V .
nth generalized Fourier coefficient:

f̂ (n) =
〈f , un〉
〈un, un〉

=
〈f , un〉
‖un‖2

.

Nth generalized Fourier polynomial:

projB f =
N∑

n=1

f̂ (n)un =
N∑

n=1

〈f , un〉
〈un, un〉

un

Generalized Fourier series of f :

lim
N→∞

N∑
n=1

f̂ (n)un =
∞∑
n=1

f̂ (n)un

or ∑
n∈Z

f̂ (n)un.





Best Approximation Theorem

Theorem (Best Approximation Theorem)

V a IP space, B = {u1, . . . , uN} be an orthogonal set of nonzero
vectors in V , f ∈ V .

1. For 1 ≤ n ≤ N, the vector f − projB f is orthogonal to un.

2. For any c1, . . . , cN ∈ C, we have∥∥∥∥∥f −
N∑

n=1

cnun

∥∥∥∥∥
2

=
N∑

n=1

∣∣∣f̂ (n)− cn

∣∣∣2 〈un, un〉+ ‖f − projB f ‖2 .

3. The vector projB f is the unique element in the span of B that
is closest to f in the L2 metric.

4. (Bessel’s inequality)

‖projB f ‖ =
N∑

n=1

∣∣∣f̂ (n)
∣∣∣2 〈un, un〉 ≤ ‖f ‖2 .





Proof of (1) and (2) on PS07.
Proof of (3) and (4):



Always Better Theorem

Corollary (Always Better Theorem)

Let V be an inner product space, and let B = {un | n ∈ N} be an
orthogonal set of nonzero vectors in v . Then for f ∈ V and
1 ≤ K ≤ N, we have that∥∥∥∥∥f −

N∑
n=1

f̂ (n)un

∥∥∥∥∥ ≤
∥∥∥∥∥f −

K∑
n=1

f̂ (n)un

∥∥∥∥∥ .



Orthogonal and orthonormal bases

Definition
V an IP space. To say that B = {un | n ∈ N} ⊂ V is an
orthogonal basis means that B is an orthogonal set of nonzero
vectors and for any f ∈ V , the generalized Fourier series of f
converges to f in the inner product metric. I.e., for f ∈ V ,

∞∑
n=1

f̂ (n)un = lim
N→∞

N∑
n=1

f̂ (n)un = f ,

where convergence is in L2. Two-sided orthogonal basis similar

except
∑
n∈Z

. Orthonormal basis defined analogously, replacing

“orthogonal set of nonzero vectors” with “orthonormal set.”

THE main problem, reframed: Prove that {en} is an
orthonormal basis for C 0(S1). (Note that convergence is in L2, not
the same as pointwise or uniform.)





Why the Lebesgue integral?

For an optimal theory of {en} as an orthonormal basis, need to
overcome the fact that C 0(S1) has “holes”:

I It is possible to have a sequence of Riemann integrable
functions whose pointwise limit is not Riemann integrable

I If we look at the space V = C 0([a, b]) of continuous functions
on a closed and bounded interval under the L2 metric, we see
that V is not complete as a metric space, just like Q

We can fill in those “holes” by defining what is known as the
Lebesgue integral.



The axiomatic approach

Instead of fully defining the Lebesgue integral, which takes a whole
semester (Math 231A), we axiomatize its properties and assume it
exists, much like we assumed that R exists.

However, even to describe those desired properties, we need to
understand one particular idea from measure theory: sets of
measure zero.



Measure zero

Definition
We define the length of an open interval (a, b) to be
`((a, b)) = b − a. For E ⊆ R, we define a countable open cover
of E to be a countable collection {Ui} of open intervals whose
union contains E (i.e., E ⊆

⋃
i∈N Ui ).

Definition
To say that E ⊆ R has measure zero means that for any ε > 0,

there exists some open cover {Ui} of E such that
∞∑
i=1

`(Ui ) < ε.

Definition
For X ⊆ R, to say that a statement is true almost everywhere, or
a.e., in X , means that the set of points in X where the statement
does not hold has measure 0. Almost all, etc., defined similarly.



Example

Example-thm. If E = {xi} is a countable subset of R, then E has
measure zero.
Proof:





A technical lemma

Lemma
(A,B) open int in R, {Ui} countable collection of open int in
(A,B). There exists a countable collection {Vj} of bounded open
ints s.t.:

1. (Disjoint) For j 6= k , Vj ∩ Vk = ∅;

2. (Union)
∞⋃
j=1

Vj =
∞⋃
i=1

Ui ; and

3. (Shorter)
∞∑
j=1

`(Vj) ≤
∞∑
i=1

`(Ui ).

Picture:

Typical of intro measure theory: “Obvious”, but proof is
complicated.



A set of measure zero can’t contain an interval

Theorem
If E is a set of measure zero, and (a, b) is any open interval in R,
then (a, b) is not contained in E .

Proof:



Continuous and equal a.e. means equal

Corollary

Suppose X = [a, b] or R and for some f , g : X → C, we have that
f (x) = g(x) for almost all x ∈ X . Then for c ∈ X , if f and g are
continuous at c , then f (c) = g(c).

Proof:


