Math 131B, Wed Oct 21

> 7.4: This is where it gets weird for a bit.

- Use a laptop or desktop with a large screen so you can read these words clearly.
- In general, please turn off your camera and mute yourself.
- Exception: When we do groupwork, please turn both your camera and mic on. (Groupwork will not be recorded.)
- Please always have the chat window open to ask questions.
- Reading for today: 7.4. Reading for Mon: 7.5.
- PS07 outline due Mon (not today).
- Problem session Fri Oct Ko, 10:00-noon on Zoom.

23

Recap: Orthogonal sets and bases

Definition

Let V be an inner product space and let l be an index set. To say that $\mathcal{B}=\left\{u_{i} \mid i \in I\right\} \subset V$ is an orthogonal set means that for $i \neq j, u_{i}$ and u_{j} are orthogonal (i.e., $\left\langle u_{i}, u_{j}\right\rangle=0$).
To say that $\mathcal{B}=\left\{e_{i} \mid i \in I\right\} \subset V$ is an orthonormal set means that \mathcal{B} is an orthogonal set and also, for every $i \in I,\left\langle e_{i}, e_{i}\right\rangle=1$.

THE example: For $V=C^{0}\left(S^{1}\right)$ with usual L^{2} IP and $e_{n}(x)=e^{2 \pi i n x},\left\{e_{n}(x) \mid n \in \mathbb{Z}\right\}$ is orthonormal.

$$
\left\langle f, g=\int_{0}^{1} f(x) g(x) d x\right.
$$

Generalized Fourier polynomials and series THF ex '.
V an IP space, $\left\{u_{n}\right\}$ an orthogonal set of nonzero vectors, $f \in V$. nth generalized Fourier coefficient:

$$
\left.\left(\| e_{\|}\right)=1\right)
$$

$$
\hat{f}(n)=\frac{\left\langle f, u_{n}\right\rangle}{\left\langle u_{n}, u_{n}\right\rangle}=\frac{\left\langle f, u_{n}\right\rangle}{\left\|u_{n}\right\|^{2}}=\left\langle f, e_{n}\right\rangle
$$

N th generalized Fourier polynomial:
$\beta=\left\{u_{1} \cdots u_{N}\right\}$

$$
\operatorname{proj}_{\mathcal{B}} f=\sum_{n=1}^{N} \hat{f}(n) u_{n}=\sum_{n=1}^{N} \frac{\left\langle f, u_{n}\right\rangle}{\left\langle u_{n}, u_{n}\right\rangle} u_{n}=f_{\mathbb{N}}
$$

Generalized Fourier series of f :

$$
\begin{aligned}
& B=\left\{u, u_{\lim } \sum_{n=1}^{N} \hat{f}(n) u_{n}=\sum_{n=1}^{\infty} \hat{f}(n) u_{n}\right. \\
& \Phi^{\infty}=\left\{u_{1}, u_{0}, u_{1}, \cdots\right\rangle_{\sum_{x=1}(f) u_{n}} \\
& =F \operatorname{Sot} f
\end{aligned}
$$

Note: It $\left\{n_{1}, \ldots, u_{N}\right\}$ orthog, $B_{y}+b_{a y} \Rightarrow$ orthogsum

$$
\begin{aligned}
\left\|\sum_{n=1}^{N} c_{n} u_{n}\right\|^{2} & =\sum_{n=1}^{N}\left\|c_{n} u_{n}\right\|^{2} \\
& =\sum_{n=1}^{N}\left|c_{n}\right|^{2} v u_{n} \|^{2}
\end{aligned}
$$

Best Approximation Theorem This gives the meaning of proj_ $\mathrm{B}(\mathrm{f})$.

Theorem (Best Approximation Theorem)
V a IP space, $\mathcal{B}=\left\{u_{1}, \ldots, u_{N}\right\}$ be an orthogonal set of nonzero vectors in $V, f \in V$.

1. For $1 \leq n \leq N$, the vector $f-\operatorname{proj}_{\mathcal{B}} f$ is orthogonal to u_{n}.
2. For any $c_{1}, \ldots, c_{N} \in \mathbb{C}$, we have

$$
\left\|f-\sum_{n=1}^{N} c_{n} u_{n}\right\|^{2}=\sum_{n=1}^{N}\left|\hat{f}(n)-c_{n}\right|^{2}\left\langle u_{n}, u_{n}\right\rangle+\left\|f-\operatorname{proj}_{\mathcal{B}} f\right\|^{2} .
$$

how close to f?
3. The vector $\operatorname{proj}_{\mathcal{B}} f$ is the unique element in the span of \mathcal{B} that is closest to f in the L^{2} metric.
4. (Bessel's inequality)

$$
\left\|\operatorname{proj}_{\mathcal{B}} f\right\|^{2}=\sum_{n=1}^{N}|\hat{f}(n)|^{2}\left\langle u_{n}, u_{n}\right\rangle \leq\|f\|^{2}
$$

(3) says that the blue vector is the
closest vector to
closest vector to f in the red plane
best approximation to f in the span
of B.
隹f
(4) $\|$ proj $\|\leqslant\| f \|$
spans
$=$ all l.r. of
$\left\{n_{1} \ldots, n_{N}\right\}$

Proof of (1) and (2) on PSOT arbl.c. of u_{h} Proof of (3) and (4).
(2) Indot Cn

$$
f=\left.\sum_{n=1}^{N} c_{n} u_{n}\right|^{2}=\sum_{n=1}^{N}\left|\hat{f}(n)-c_{n}\right|^{2}\left\langle u_{n}, u_{n}\right\rangle+\left\|f-\operatorname{proj}_{\mathcal{B}} f\right\|^{2}
$$

Pf of (3): To choose c_n to minimize the LHS of above, choose c_n to make sum on RHS equal to o, ie, choose $c_{n}=f(n)$.
(4) Tate $c_{n}=0$.

$$
\begin{aligned}
& \|f\|^{2}=\sum_{n=1}^{n}|f(n)|^{2}\left\langle a_{n}, n_{n}\right\rangle+(\geq 0) \\
& \|f\|^{2} \geq \sum_{n=-1}^{\infty}\left(\left.\hat{f}(n)\right|^{2}\left\langle u_{n}, v_{n}\right\rangle=\|\right. \text { projil| }
\end{aligned}
$$

Always Better Theorem

Corollary (Always Better Theorem)

Let V be an inner product space, and let $\mathcal{B}=\left\{u_{n} \mid n \in \mathbb{N}\right\}$ be an orthogonal set of nonzero vectors in v. Then for $f \in V$ and $1 \leq K \leq N$, we have that

$$
\begin{aligned}
& \underbrace{\substack{N \in h}}_{\substack{\sum_{n=1}^{N} \hat{f}(n) u_{n}}} \underbrace{\sum_{n=1}^{K} \hat{f}(n) u_{n}}_{\text {Fth }} \quad \begin{array}{l}
\text { L^2 size of error } \\
\text { in approxs } N \text { and } \\
\text { K, resp. }
\end{array} \\
& \text { (later) }
\end{aligned}
$$

I.e., later approx always get better, or $N \in h$ at least don't get worse.

Orthogonal and orthonormal bases

Definition

V an IP space. To 和 that $\mathcal{B}=\left\{u_{n} \mid n \in \mathbb{N}\right\} \subset V$ is an orthogonal basis means that \mathcal{B} is an orthogonal set of nonzero vectors and for any $f \in V$, the generalized Fourier series of f converges to f in the inner product metric. I.e., for $f \in V$,
I.e.: Any f is an
"infinite linear
combination" of $u _n$,
where conv is in L^2.

$$
\sum_{n=1}^{\infty} \hat{f}(n) u_{n}=\lim _{N \rightarrow \infty} \sum_{n=1}^{N} \hat{f}(n) u_{n}=f,
$$

where convergence is in L^{2}. Two-sided orthogonal basis similar except $\sum_{n \in \mathbb{Z}}$. Orthonormal basis defined analogously, replacing "orthogonal set of nonzero vectors" with "orthonormal set."
THE main problem, reframed: Prove that $\left\{e_{n}\right\}$ is an orthonormal basis for $C^{0}\left(S^{1}\right)$. (Note that convergence is in L^{2}, not the same as pointwise or uniform.)

Ie. (For $\left.f \in C^{\circ}\left(s^{\prime}\right)\right)$
Prove $\sum_{n * \mathbb{D}} \hat{f}\left(n e_{n}(x)\right.$ cones to f $i n L^{2}$

Prove $\left\{e_{n} \mid n \in \mathbb{Z}\right\}$ is orthonormal basis for $C^{\circ}\left(s^{\prime}\right)$.

Why the Lebesgue integral?

$$
7.4-7.5
$$

For an optimal theory of $\left\{e_{n}\right\}$ as an orthonormal basis, need to overcome the fact that $C^{0}\left(S^{1}\right)$ has "holes":

- It is possible to have a sequence of Riemann integrable functions whose pointwise limit is not Riemann integrable,
- If we look at the space $V=C^{0}([a, b])$ of continuous functions on a closed and bounded interval under the L^{2} metric, we see that V is not complete as a metric space, just like \mathbb{Q}.

We can fill in those "holes" by defining what is known as the Lebesgue integral.

This is a way to extend Riemann integral to stranger kinds of functions.

The axiomatic approach

Instead of fully defining the Lebesgue integral, which takes a whole semester (Math 231A), we axiomatize its properties and assume it exists, much like we assumed that \mathbb{R} exists.

However, even to describe those desired properties, we need to understand one particular idea from measure theory: sets of measure zero.

Measure zero

(Think: What does it mean for a subset of R to have zero length?)

Definition

We define the length of an open interval (a, b) to be $\ell((a, b))=b-a$. For $E \subseteq \mathbb{R}$, we define a countable open cover of E to be a countable collection $\left\{U_{i}\right\}$ of open intervals whose union contains E (i.e., $E \subseteq \bigcup_{i \in \mathbb{N}} U_{i}$)

Definition

To say that $E \subseteq \mathbb{R}$ has measure zero means that for any $\epsilon>0$, there exists some ppen cover $\left\{U_{i}\right\}$ of E such that $\sum_{i=1}^{\infty} \ell\left(U_{i}\right)<\epsilon$.
Definition c-1! 18
For $X \subseteq \mathbb{R}$, to say that a statement is true almost everywhere, or a.e., in X, means that the set of points in X where the statement does not hold has measure 0 . Almost all, etc., defined similarly.

$$
\begin{aligned}
& \text { (A) } \epsilon>0 \\
& \xrightarrow[\leftrightarrow_{1}]{u_{1}} l\left(u_{1}\right)=\frac{\epsilon}{4} \\
& \left.\xrightarrow[x_{2}]{x_{1}} u_{2} \text { (} u_{2}\right)=\frac{\epsilon}{8} \\
& \xrightarrow[x_{3}]{\stackrel{x_{2}}{\longrightarrow}} \ell l\left(u_{3}\right)=\frac{\epsilon}{1_{0}} \\
& \xrightarrow[: x_{4}]{x_{4}} \quad l\left(u_{4}\right)=\frac{6}{32}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{H}{x_{i}} l l\left(u_{i}\right)=\frac{t}{2^{i n 1}} \\
& \sum_{i=1}^{\infty} l\left(u_{i}\right)=\frac{t}{2}<t
\end{aligned}
$$

A technical lemma

Lemma
(A, B) open in in $\mathbb{R},\left\{U_{i}\right\}$ countable collection of open int in (A, B). There exists a countable collection $\{y / j\}$ of bounded open ints s.t.:

1. (Disjoint) For $j \neq \mathrm{A}, V_{j} \cap V_{k}=\emptyset$
2. (Union) $\bigcup_{j=1}^{\infty} V_{j}=\bigcup_{i=1}^{\infty} U_{i}$; nnd

3. (Shorter) $\sum_{j=1}^{\infty} \ell\left(V_{j}\right) \neq \sum_{i=1}^{\infty} \ell\left(U_{i}\right)$.

Picture:

Typical of intro measure theory: "Obvious", but proof is complicated.

A set of measure zero can't contain an interval

Theorem
If E is a set of measure zero, and (a, b) is any open interval in \mathbb{R}, then (a, b) is not contained in E.
Proof:

Canyon cover contain

See: Banach-Tarski paradox on YouTube.

Continuous and equal a.e. means equal

Corollary

Suppose $X=[a, b]$ or \mathbb{R} and for some $f, g: X \rightarrow \mathbb{C}$, we have that $f(x)=g(x)$ for almost all $x \in X$. Then for $c \in X$, if f and g are continuous at c, then $f(c)=g(c)$.
Proof:

