## Math 131B, Wed Oct 14

- Use a laptop or desktop with a large screen so you can read these words clearly.
- In general, please turn off your camera and mute yourself.
- Exception: When we do groupwork, please turn both your camera and mic on. (Groupwork will not be recorded.)
- Please always have the chat window open to ask questions.
- Reading for today: 7.2. Reading for next Wed: 7.3.
- PS06 due today. PS07 outine din 1 . 1 .
- EXAM 1 on Mon Oct 19. (hs 4, 5, b. 7,
- Exam review Fri Oct 16, 10:00-noon on Zoom.



## Recap of normed spaces 7.2

## Definition

$V$ a fin space. A norm on $V$ is $\|\cdot\|: V \rightarrow \mathbb{R}$ s.t.:

1. (Positive definite) For all $f \in V,\|f\| \geq 0$, and if $\|f\|=0$, then $f=0$.
2. (Absolute homogeneity) For all $f \in V$ and $a \in \mathbb{C}$,

$$
\|a f\|=|a|\|f\| .
$$

3. (Triangle inequality) For all $f, g \in V,\|f+g\| \leq\|f\|+\|g\|$.

A normed space is a fn space with a choice of norm.
For $V=C^{0}\left(S^{1}\right)$, norms include:

$$
\begin{aligned}
& \|f\|_{1}=\int_{z z^{\prime}}|f(x)| d x \\
& L^{2} \\
& \begin{aligned}
\|f\|=\|f\|_{2} & =\left(\int_{\mathbb{S}^{\prime}}|f(x)|^{2} d x\right)^{1 / 2} \\
\|f\|_{\infty} & =\sup \left\{|f(x)| \mid x \in \mathcal{S}^{\prime}\right\}
\end{aligned}
\end{aligned}
$$

## Different meanings of $f_{n} \rightarrow f$

Let $V=C^{0}([0,1])$, and consider $f_{n}$ in $V$. Note that we have now defined $\lim _{n \rightarrow \infty} f_{n}=f$ in four different ways:

- Pointwise convergence: For every $x \in[0,1]$, $\lim _{n \rightarrow \infty} f_{n}(x)=f(x)$.
- Uniform, or $L^{\infty}$ convergence: If $\|\cdot\|_{\infty}$ is the $L^{\infty}$ norm on $C^{0}([0,1])$, then $\lim _{n \rightarrow \infty}\left\|f_{n}-f\right\|_{\infty}=0$, i.e., $f_{n}$ converges uniformly to $f$ on $[0,1]$.
- $L^{1}$ convergence: $\lim _{n \rightarrow \infty} \int_{0}^{1}\left|f_{n}(x)-f(x)\right| d x=0$.
- $L^{2}$ convergence/inner product norm: The one for

$$
\lim _{n \rightarrow \infty} \int_{0}^{1}\left|f_{n}(x)-f(x)\right|^{2} d x=0
$$

## Limit laws in a normed space

Because every normed space is a metric space, we can carry over the material we developed about limits and continuity in metric spaces.
Limit laws work in normed spaces pretty much as they work in $\mathbb{C}$.
Theorem V novnird Spore
If $f_{n}$ is a convergent sequence in $V$, then $f_{n}$ is bounded.

## Theorem

Let $f_{n}$ and $g_{n}$ be sequences in $V$, and suppose that $\lim _{n \rightarrow \infty} f_{n}=f$, $\lim _{n \rightarrow \infty} g_{n}=g$, and $c \in \mathbb{C}$. Then we have that:

1. $\lim _{n \rightarrow \infty} c f_{n}=c f$; and
2. $\lim _{n \rightarrow \infty}\left(f_{n}+g_{n}\right)=f+g$.

Proofs are the same too. (rcplace | |w/il

## Continuous functions between normed spaces

## Definition

Let $T: V \rightarrow W$ be a function, where $V$ and $W$ are normed spaces (e.g., $W=\mathbb{C}$ ). For $g \in V$, to say that $T$ is continuous at $g$ means that one of the following conditions holds:

- (Sequential continuity) For every sequence $f_{n}$ in $V$ such that $\lim _{n \rightarrow \infty} f_{n}=g$, we have that $\lim _{n \rightarrow \infty} T\left(f_{n}\right)=T(g)$.
- $(\epsilon-\delta$ continuity) For every $\epsilon>0$, there exists some $\delta(\epsilon)>0$ such that if $f \in V$ and $\|f-g\|<\delta(\epsilon)$, then $\|T(f)-T(g)\|<\epsilon$.
To say that $T$ is continuous on $V$ means that $T$ is continuous at $f$ for all $f \in V$.


## Example/application

$V$ an IP space and fix $g \in V$.
wr.t. IP norm
Theorem
$T_{g}: V \rightarrow$ Edefined by $T_{g}(f)=\langle f, g\rangle$ is continuous on $V$ and similarly for $\bar{T}_{g}(f)=\langle g, f\rangle$.

Corollary

## $\left(\operatorname{in} L^{2}\right)$

If $\sum_{n=1}^{\infty} f_{n}\left\langle\sum_{n=j n}^{\infty} \psi_{n}{ }^{\text {converges to }}\right\rangle$

$$
\langle f, g\rangle=\sum_{n=1}^{\infty}\left\langle f_{n}, g\right\rangle, \quad\langle g, f\rangle=\sum_{n=1}^{\infty}\left\langle g, f_{n}\right\rangle .
$$

I.e., with $\mathrm{L}^{\wedge} 2$ convergence, can pull out infinite sums, not just finite ones.

In particular, both RHS converge.
Later used for Fourier transform. Proof of both: PS07.

$$
\text { latcrinch. } 7 \text { ahl }
$$


$A) f_{0} \in V$

 cont it $f_{0}$ then $\mid T(f)-T(t)$
(C) For $f_{0} \notin V, T$ inn it $f_{0}$ <t

## Cauchy sequences and Cauchy completeness in a normed space

$V$ a normed space.
Definition
$f_{n}$ be a sequence in $V$. To say that $f_{n}$ is Cauchy means that for every $\epsilon>0$, there exists some $N(\epsilon) \in \mathbb{R}$ such that if $n, k>N(\epsilon)$, then $\left\|f_{n}-f_{k}\right\|<\epsilon$.

Definition
l.e., the f_n get closer to each other as n -> infinity, but

To say that a normed space $V$ is complete means that any
Cauchy sequence in $V$ converges to some limit in $V$.

## A Cauchy sequence in $V$ whose $L^{2}$ limit is not in $V$

Let $V=C^{0}([0,2])$, and consider the following sequence in $V$ :

$$
f_{n}(x)= \begin{cases}x^{n} & \text { if } 0 \leq x \leq 1 \\ 1 & \text { if } x>1\end{cases}
$$

 i.e., $f_{n}$ is Cauchy. However, can show that the only possible $L^{2}$ limit of $f_{n}$ is

$$
f(x)= \begin{cases}0 & \text { if } 0 \leq x<1 \\ 1 & \text { if } x \geq 1\end{cases}
$$

which is not continuous, and therefore not in $V$. So $V$ is not complete.



So $V$ is not complete because we have to go outside $V$ to find a limit of a particular Cauchy sequence.

This is like how $Q$ (the field of the rationals) is not complete, because to find the limit of the Cauchy sequence:
$3,3.1,3.14,3.141,3.1415,3.14159, \ldots .$.
we have to leave $Q$ to get the limit of pi.

## The upshot

How can we make $V=C^{0}([0,2])$ into a complete space?

- Could try to "plug the holes" in $V$ by adding the limits of sequences like above $f_{n}$.
- But this makes more sequences of functions possible, which create new holes to plug. The Lebesgue int functions are enough to plug the holes.
- Process continues until we end up with functions that are not even (Riemann) integrable on [0, 2]; instead, they are Lebesgue integrable. (More precisely, they are $f:[0,2] \rightarrow \mathbb{C}$ such that $|f(x)|^{2}$ is Lebesgue integrable on $[0,2]$.)
- Compare: The real numbers $\mathbb{R}$ are precisely what you get when you try to "plug the holes" in the rational numbers $\mathbb{Q}$. Note that in 131A, we didn't prove that you could do this; we just axiomatically assumed you could do it.
- Later (Sec 7.4-7.5), we will similarly assume axioms that allow you to plug the holes in $V$. (Math 231A then actually proves this is possible, without additional assumptions.)


## Orthogonal sets and bases



## Definition


$I=N$ or $\mathbb{Z}$ $\operatorname{or}\{1, \ldots, n\}$

Let $V$ be an inner product space and let $l$ be an index set. To say that $\mathcal{B}=\left\{u_{i} \mid i \in I\right\} \subset V$ is an orthogonal set means that for $i \neq j, u_{i}$ and $u_{j}$ are orthogonal (i.e., $\left\langle u_{i}, u_{j}\right\rangle=0$ ).
To say that $\mathcal{B}=\left\{e_{i} \mid i \in I\right\} \subset V$ is an orthonormal set means that $\mathcal{B}$ is an orthogonal set and also, for every $i \in I,\left\langle e_{i}, e_{i}\right\rangle=1$.

For us: We do Fourier series in terms of e_n(x).
This generalized theory also covers Fourier series in terms of:

- $\sin (2 \backslash$ pi $n x), \cos (2 \backslash p i n x)$
- polynomials
- polynomials * Gaussians (version used for quantum mechanics)
- wavelets
(etc.) All of those are more naturally indexed by N than by Z .


## THE example

Consider $C^{0}\left(S^{1}\right)$ with inner product

$$
\langle f, g\rangle=\int_{S^{1}} f(x) \overline{g(x)} d x
$$

Let $e_{n}(x)=e^{2 \pi i n x}$, and recall:

$$
\begin{aligned}
\left\langle e_{n}, e_{k}\right\rangle & =\int_{0}^{1} e_{n}(x) \overline{e_{k}(x)} d x \\
& = \begin{cases}0 & n \neq k \\
1 & n=k\end{cases}
\end{aligned}
$$

So $\left\{e_{n}(x) \mid n \in \mathbb{Z}\right\}$ is orthonormal.

## Generalized Fourier polynomials Goal of the semester: Show

$V$ an IP space, I an index set. $\left\{e_{-} n(x)\right\}$ is a "basis" for fns on $S^{\wedge} 1$.

Definition
WTS that B is a "basis" for V .
Let $\mathcal{B}=\left\{u_{n} \mid n \in I\right\}$ be an orthogonal set of nonzero vectors in $V$.
For $f \in V$ and $n \in I$, we define the $n$th generalized Fourier
coefficient of $f$ with respect to $\mathcal{B}$ to be If $\left\|n_{n}\right\|=1$.

$$
\hat{f}(n)=\frac{\left\langle f, u_{n}\right\rangle}{\left\langle u_{n}, u_{n}\right\rangle}=\frac{\left\langle f, u_{n}\right\rangle}{\left\|u_{n}\right\|^{2}} .
$$

$$
\left.=\sim \operatorname{cin}_{4}\right)
$$

If $\mathcal{B}=\left\{u_{1}, \ldots, u_{N}\right\}$, then we also define

$$
\operatorname{proj}_{\mathcal{B}} f=\sum_{n=1}^{N} \hat{f}(n) u_{n}=\sum_{n=1}^{N} \frac{\left\langle f, u_{n}\right\rangle}{\left\langle u_{n}, u_{n}\right\rangle} u_{n}
$$

to be the projection of $f$ onto twe span of $\mathcal{B}$.

$$
\begin{aligned}
& \text { Picture of projection } \\
& \begin{aligned}
f=\frac{\operatorname{proj}_{a}(t)}{\sim}+ & \left(\operatorname{sinft} 1 \text { to } s_{\text {pan }} B 3\right) \\
& \text { in Spin } B
\end{aligned}
\end{aligned}
$$

## Generalized Fourier series

Let $V$ an IP space, $\mathcal{B}=\left\{u_{i} \mid i \in \mathbb{N}\right\}$ an orthogonal set of nonzero vectors in $V$.

Definition
We define

$$
f \sim \lim _{N \rightarrow \infty} \sum_{n=1}^{N} \hat{f}(n) u_{n}=\sum_{n=1}^{\infty} \hat{f}(n) u_{n}
$$

to be the generalized Fourier series of $f$ with respect to $\mathcal{B}$.
For $\mathcal{B}=\left\{u_{i} \mid i \in \mathbb{Z}\right\}$, we analogously have

$$
f \sim \sum_{n \in \mathbb{Z}} \hat{f}(n) u_{n}
$$

## Back to THE example

Take $V=C^{0}\left(S^{1}\right)$ with the $L^{2}$ inner product. Let

$$
\mathcal{B}_{N}=\left\{e_{0}, e_{1}, e_{-1}, e_{2}, e_{-2}, \ldots, e_{N}, e_{-N}\right\}
$$

Then:

- $n$th Fourier coefficient $\hat{f}(n)$ is exactly $\hat{f}(n)=\left\langle f, e_{n}\right\rangle$, as before.
- Projection of $f$ onto the span of $\mathcal{B}_{N}$ is $N$ th Fourier polynomial of $f$.
- Generalized Fourier series with respect to $\mathcal{B}=\left\{e_{0}, e_{1}, e_{-1}, e_{2}, e_{-2}, \ldots\right\}$ is usual Fourier series of $f$.


## So why the abstraction?

- Includes other examples, like Fourier series with sines and cosines. (Not just a theory of one example!)
- Abstraction highlights what's important geometrically, as we'll see soon....

