
Math 131B, Mon Oct 12

I Use a laptop or desktop with a large screen so you can read
these words clearly.

I In general, please turn off your camera and mute yourself.

I Exception: When we do groupwork, please turn both your
camera and mic on. (Groupwork will not be recorded.)

I Please always have the chat window open to ask questions.

I Reading for today: 7.2. Reading for next Wed: 7.3.

I PS06 due today. PS07 outline due in 1 week.

I EXAM 1 on Mon Oct 19.

I Exam review Fri Oct 16, 10:00–noon on Zoom.



Recap of normed spaces

Definition
V a fn space. A norm on V is ‖·‖ : V → R s.t.:

1. (Positive definite) For all f ∈ V , ‖f ‖ ≥ 0, and if ‖f ‖ = 0,
then f = 0.

2. (Absolute homogeneity) For all f ∈ V and a ∈ C,
‖af ‖ = |a| ‖f ‖.

3. (Triangle inequality) For all f , g ∈ V , ‖f + g‖ ≤ ‖f ‖+ ‖g‖.
A normed space is a fn space with a choice of norm.

For V = C 0(S1), norms include:

‖f ‖1 =

∫
X
|f (x)| dx

‖f ‖ = ‖f ‖2 =

(∫
X
|f (x)|2 dx

)1/2

‖f ‖∞ = sup {|f (x)| | x ∈ X .}



Different meanings of fn → f

Let V = C 0([0, 1]), and consider fn in V . Note that we have now
defined lim

n→∞
fn = f in four different ways:

I Pointwise convergence: For every x ∈ [0, 1],
lim
n→∞

fn(x) = f (x).

I Uniform, or L∞ convergence: If ‖·‖∞ is the L∞ norm on
C 0([0, 1]), then lim

n→∞
‖fn − f ‖∞ = 0, i.e., fn converges

uniformly to f on [0, 1].

I L1 convergence: lim
n→∞

∫ 1

0
|fn(x)− f (x)| dx = 0.

I L2 convergence/inner product norm:

lim
n→∞

∫ 1

0
|fn(x)− f (x)|2 dx = 0.



Limit laws in a normed space

Limit laws work in normed spaces pretty much as they work in C.

Theorem
If fn is a convergent sequence in V , then fn is bounded.

Theorem
Let fn and gn be sequences in V , and suppose that lim

n→∞
fn = f ,

lim
n→∞

gn = g , and c ∈ C. Then we have that:

1. lim
n→∞

cfn = cf ; and

2. lim
n→∞

(fn + gn) = f + g .

Proofs are the same too.



Continuous functions between normed spaces

Definition
Let T : V →W be a function, where V and W are normed spaces
(e.g., W = C). For g ∈ V , to say that T is continuous at g
means that one of the following conditions holds:

I (Sequential continuity) For every sequence fn in V such
that lim

n→∞
fn = g , we have that lim

n→∞
T (fn) = T (g).

I (ε-δ continuity) For every ε > 0, there exists some δ(ε) > 0
such that if f ∈ V and ‖f − g‖ < δ(ε), then
‖T (f )− T (g)‖ < ε.

To say that T is continuous on V means that T is continuous at
f for all f ∈ V .



Example/application

V an IP space and fix g ∈ V .

Theorem
Tg : V → F defined by Tg (f ) = 〈f , g〉 is continuous on V , and
similarly for T g (f ) = 〈g , f 〉.

Corollary

If
∞∑
n=1

fn converges to f in IP norm, then:

〈f , g〉 =
∞∑
n=1

〈fn, g〉 , 〈g , f 〉 =
∞∑
n=1

〈g , fn〉 .

In particular, both RHS converge.

Later used for Fourier transform. Proof of both: PS07.





Cauchy sequences and Cauchy completeness in a normed
space

V a normed space.

Definition
fn be a sequence in V . To say that fn is Cauchy means that for
every ε > 0, there exists some N(ε) ∈ R such that if n, k > N(ε),
then ‖fn − fk‖ < ε.

Definition
To say that a normed space V is complete means that any
Cauchy sequence in V converges to some limit in V .



A Cauchy sequence in V whose L2 limit is not in V

Let V = C 0([0, 2]), and consider the following sequence in V :

fn(x) =

{
xn if 0 ≤ x ≤ 1,

1 if x > 1.

A calculation shows that if n, k > N(ε) =
2

ε2
, then ‖fn − fk‖2 < ε2,

i.e., fn is Cauchy. However, can show that the only possible L2

limit of fn is

f (x) =

{
0 if 0 ≤ x < 1,

1 if x ≥ 1,

which is not continuous, and therefore not in V . So V is not
complete.





The upshot
How can we make V = C 0([0, 2]) into a complete space?

I Could try to “plug the holes” in V by adding the limits of
sequences like above fn.

I But this makes more sequences of functions possible, which
create new holes to plug.

I Process continues until we end up with functions that are not
even (Riemann) integrable on [0, 2]; instead, they are
Lebesgue integrable. (More precisely, they are f : [0, 2]→ C
such that |f (x)|2 is Lebesgue integrable on [0, 2].)

I Compare: The real numbers R are precisely what you get
when you try to “plug the holes” in the rational numbers Q.
Note that in 131A, we didn’t prove that you could do this; we
just axiomatically assumed you could do it.

I Later (Sec 7.4–7.5), we will similarly assume axioms that
allow you to plug the holes in V . (Math 231A then actually
proves this is possible, without additional assumptions.)



Orthogonal sets and bases

Definition
Let V be an inner product space and let I be an index set. To say
that B = {ui | i ∈ I} ⊂ V is an orthogonal set means that for
i 6= j , ui and uj are orthogonal (i.e., 〈ui , uj〉 = 0).
To say that B = {ei | i ∈ I} ⊂ V is an orthonormal set means
that B is an orthogonal set and also, for every i ∈ I , 〈ei , ei 〉 = 1.



THE example

Consider C 0(S1) with inner product

〈f , g〉 =

∫
S1

f (x)g(x) dx

Let en(x) = e2πinx , and recall:

〈en, ek〉 =

So {en(x) | n ∈ Z} is orthonormal.



Generalized Fourier polynomials
V an IP space, I an index set.

Definition
Let B = {un | n ∈ I} be an orthogonal set of nonzero vectors in V .
For f ∈ V and n ∈ I , we define the nth generalized Fourier
coefficient of f with respect to B to be

f̂ (n) =
〈f , un〉
〈un, un〉

=
〈f , un〉
‖un‖2

.

If B = {u1, . . . , uN}, then we also define

projB f =
N∑

n=1

f̂ (n)un =
N∑

n=1

〈f , un〉
〈un, un〉

un

to be the projection of f onto the span of B.



Picture of projection



Generalized Fourier series

Let V an IP space, B = {ui | i ∈ N} an orthogonal set of nonzero
vectors in V .

Definition
We define

f ∼ lim
N→∞

N∑
n=1

f̂ (n)un =
∞∑
n=1

f̂ (n)un

to be the generalized Fourier series of f with respect to B.

For B = {ui | i ∈ Z}, we analogously have

f ∼
∑
n∈Z

f̂ (n)un.



Back to THE example

Take V = C 0(S1) with the L2 inner product. Let

BN = {e0, e1, e−1, e2, e−2, . . . , eN , e−N} .

Then:

I nth Fourier coefficient f̂ (n) is exactly f̂ (n) = 〈f , en〉, as
before.

I Projection of f onto the span of BN is Nth Fourier polynomial
of f .

I Generalized Fourier series with respect to
B = {e0, e1, e−1, e2, e−2, . . . } is usual Fourier series of f .



So why the abstraction?

I Includes other examples, like Fourier series with sines and
cosines. (Not just a theory of one example!)

I Abstraction highlights what’s important geometrically, as we’ll
see soon. . . .


