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Use a laptop or desktop with a large screen so you can read
these words clearly.

In general, please turn off your camera and mute yourself.

Exception: When we do groupwork, please turn both your
camera and mic on. (Groupwork will not be recorded.)

Please always have the chat window open to ask questions.
Reading for today: 7.2. Readlng for next Wed: 7.3.
PS06 due today. + A

EXAM<4, on Mon Oct 19. C[\ s 4 g' b - 7 |
Exam review Fri Oct 16, 10:00—-noon on oom
6’5 i4-06




Recap of normed spaces@

Definition
V a fn space. Anormon Vis || :V — Rs.t:
1. (Positive definite) For all f € V, ||f|| > 0, and if ||| =0,
then f = 0.
2. (Absolute homogeneity) For all f € V and a € C,
[af{| = lal [I71]

3. (Triangle inequality) For all f,g € V, ||f + gl < |If| + llg]|-
A normed space is a fn space with a choice of norng
)

For V = C9(S!), norms include: A(
n . €,9)
L 171, = [ 00l o v

L ||f||—|rf||2—</|f )1/2 6 a

m 1]l = sup {|F(x)| | x € L) nety: ¢
(



Different meanings of f, — f

Let V = C°([0,1]), and consider f, in V. Note that we have now

defined ILm f, = f in four different ways:

» Pointwise convergence: For every x € [0, 1],
nILngo fo(x) = f(x).
» Uniform, or L*° convergence: If ||-|| . is the L norm on
C°([0,1]), then lim ||f, — f|l., =0, i.e., f, converges
n—oo

uniformly to f on [0, 1].
1
» L1 convergence: Ii_)m / |fa(x) — f(x)| dx = 0.
n—o0 0
» [2 convergence/inner product norm: ‘TL. e one (0 v

1
lim f.(x) — F(x)]> dx = 0. . .
Jim [ 1660 () Touvic Soyies



Limit laws in a normed space

Because every normed space is a metric space, we can carry over the material
we developed about limits and continuity in metric spaces.

Limit laws work in normed spaces pretty much as they work in C.

Theorem V Iovne d Sr)d‘(()

If f, is a convergent sequence in V, then f, is bounded.

Theorem C n -(h \ < Mﬁ

Let f, and g, be sequences in V, and suppose that Ii_)m fn="F,
n—oo

lim g, =g, and c € C. Then we have that:

n—oo

1. lim cf, = cf; and
n—oo

2. (fht+gn)=1+g.

lim
n—o0

Proofs are the same too. ((.CW[‘CQ‘ \ \W/ [ ”)



Continuous functions between normed spaces

Definition

Let T : V — W be a function, where V and W are normed spaces
(e.g., W =C). For g € V, to say that T is continuous at g
means that one of the following conditions holds:

> (Sequential continuity) For every sequence f, in V such
that lim f, = g, we have that lim T(f,) = T(g).
n—o0 n—oo
> (e-6 continuity) For every € > 0, there exists some d(¢) > 0
such that if f € V and ||f — g|| < d(e), then
IT(f) = T(e)ll <e
To say that T is continuous on V means that T is continuous at
fforall feV.



Example/application L..L

V an IP space and fix g € V. WV:t lpnorh

Theorem
Tg:V = &’ef/ned by Tg(f) = (f,g) is continuous on V| and
s:ml/arly for T(f) = (g, f).

CoroIIary (‘n L )

lfz fa converges to f in IP norm, then:

l.e., with L2 convergence, can pull out

"1"'] l'lj goo infinite sums, not justﬁnictz ones.
(f.g) =2 (fme), g.f)=) (gf
n=1 n=1

In particular, both RHS converge.
Later used foy@ier transform. Proof of both: PS07.
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Cauchy sequences and Cauchy completeness in a normed
space

V' a normed space.

Definition
f, be a sequence in V. To say that f, is Cauchy means that for
every € > 0, there exists some N(e) € R such that if n, k > N(e),

then ||f, — fi|| < e.
1 il l.e., the f_n get closer to each other as n -= infinity, but

Definition are not assumed to get closer to some limit f.

To say that a normed space V' is complete means that any
Cauchy sequence in V' converges to some Iimi



A Cauchy sequence in V whose L? limit is not in V

Let V = C°([0,2]), and consider the following sequence in V:
"~

x" if0<x<1, Y.
fa(x) = )
1 if x> 1.
1 1

A
2 1 2

A calculation shows that if n, k > N(c) = =, then ||f, — fi[|° < ¢?,
€

i.e., f, is Cauchy. However, can show that the only possible L=
limit of £, is . -
i <
F(x) = 0 !fO_X<1, |V\)—
1 ifx>1,

which is not continuous, and therefore not in V. So V is not
complete.

'—————



SoV is not complete because we have to go outside V to find a limit of
a particular Cauchy sequence.

This is like how Q (the field of the rationals) is not complete, because to
find the limit of the Cauchy sequence:

3, 3.1,3.14, 3.141, 3.1415, 3.141589,.....

we have to leave Q to get the limit of pi.



The upshot

How can we make V = C°([0,2]) into a complete space?

>

>

>

Could try to “plug the holes” in V by adding the limits of
sequences like above f,,.

But this makes more sequences of functions possible, which
create new holes to plug. The Lebesgue int functions are enough

to plug the holes.
Process continues until we end up with functions that are not

even (Riemann) integrable on [0, 2]; instead, they are
Lebesgue integrable. (More precisely, they are f : [0,2] — C
such that |f(x)|? is Lebesgue integrable on [0,2].)

Compare: The real numbers R are precisely what you get
when you try to “plug the holes” in the rational numbers Q.
Note that in 131A, we didn't prove that you could do this; we
just axiomatically assumed you could do it.

Later (Sec 7.4-7.5), we will similarly assume axioms that
allow you to plug the holes in V. (Math 231A then actually
proves this is possible, without additional assumptions.)



Orthogonal sets and bases 7 3

V {n g"a("& 7?w Z
— or
Definition { < ) » (/ or‘{l).--, l\}

Let V be an inner product space and let / be an index set. To say
that B = {u; | i € I} C V is an orthogonal set means that for

i # j, uj and u; are orthogonal (i.e., (uj, uj) = 0).

To say that B ={e;j | i € I} C V is an orthonormal set means
that B is an orthogonal set and also, for every i € I, (ej, ;) = 1.

For us: We do Fourier series in terms of e_n(x).

This generalized theory also covers Fourier series in terms of.

- sin(2\pi n x), cos(2\pi n x)

- polynomials

- polynomials * Gaussians (version used for guantum mechanics)

- wavelets
(etc.) All of those are more naturally indexed by N than by Z.



THE example

Consider C%(S!) with inner product
(f.8) = | F(203) o

Let e,(x) = €™, and recall:

(€n, ex) f e (x\b’?/,f{
o) nZk

| N=k

So {en(x) | n € Z} is orthonormal.

(l



Generalized Fourier polynomials  Goal of the semester: Show
V an IP space, | an index set. {e_n(x)} is a "basis" for fns on S"1.
Definition é_/""' WTS that B is a "basis" for V.
Let B = {u, | n € I} be an orthogonal set of nonzero vectors in V.
For f € V and n € I, we define the nth generalized Fourier
coefficient of f with respect to B to be r '
P Zf n = ] .

~ f,u f,u
O =<k
If B={u1,...,un}, then we also define
N N
projgs f ; 2 Ty tn)

to be the projection of f onto tité\span of B. N
£ 'G( h]-( (%)
h" -



Picture of prOJeCtIOH This is actually what happens

with the Fourier polynomial we
have already defined.
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Generalized Fourier series

Let V an IP space, B = {u; | i € N} an orthogonal set of nonzero
vectors in V.

Definition
We define
N fe’e)
f~ /v'i“oo; F(n)u, = Z_‘; f(n)u,

to be the generalized Fourier series of f with respect to 5.

For B = {uj | i € Z}, we analogously have

f~ Z f(n)un.

nezZ



Back to THE example

Take V = CO(S?) with the L2 inner product. Let
B/V = {607 €1,€-1,€2,€_2,...,€EpN, e—/\/} .

Then:
> nth Fourier coefficient 7(n) is exactly 7(n) = (f, e,), as
before.

» Projection of f onto the span of By is Nth Fourier polynomial
of f.

» Generalized Fourier series with respect to
B ={ey,e1,e_1,e,€e_2,...} is usual Fourier series of f.



So why the abstraction?

» Includes other examples, like Fourier series with sines and
cosines. (Not just a theory of one example!)

» Abstraction highlights what's important geometrically, as we'll
see soon. . ..



