Math 131B, Mon Oct 12

- Use a laptop or desktop with a large screen so you can read these words clearly.
- In general, please turn off your camera and mute yourself.
- Exception: When we do groupwork, please turn both your camera and mic on. (Groupwork will not be recorded.)
- Please always have the chat window open to ask questions.
- Reading for today and Wed: 7.2.
- PS06 due Wed.
- EXAMD in one week. On PSO4-06
- Exam review Fri Oct 16, 10:00-noon on Zoom.

Recap of IP spaces

Definition

An inner product on V is $\langle\cdot, \cdot\rangle: V \times V \rightarrow \mathbb{C}$ s.t. for $f, g, h \in V$ and $a, b \in \mathbb{C}$,

$$
\begin{aligned}
& \text { 1. }\langle a f+b g, h\rangle=a\langle f, h\rangle+b\langle g, h\rangle \\
& \text { 2. }\langle g, f\rangle=\overline{\langle f, g\rangle} \\
& \text { 3. }\langle f, f\rangle \geq 0 \text {, and if }\langle f, f\rangle=0 \text {, then } f=0 \text {. }
\end{aligned}
$$

Definition

For $f \in V$, we define the norm of f to be $\|f\|=\sqrt{\langle f, f\rangle}$.
Example
Let $X=[a, b]$ or S^{1}, and let $V=C^{0}(X)$. Then for $f, g \in V$,

$$
\langle f, g\rangle=\int_{X} f(x) \overline{g(x)} d x
$$

is an IP on V.

$$
\begin{aligned}
& a, b \not \subset \quad \overline{\left(\frac{a}{b}\right)}=\frac{\bar{a}}{\bar{b}} \\
& \overline{a b}=\bar{a} \bar{b} \\
& \overline{\left(\frac{i}{i}\right)}=\frac{-i}{-i} \\
& \overline{a+b}=\bar{a}+\frac{b}{b}
\end{aligned}
$$

$$
\begin{aligned}
& \langle f-\eta, g\rangle \\
& \begin{array}{l}
\text { You can distribute differences } \\
\text { just like you distribute sums }
\end{array} \\
& =\langle f, g\rangle+\langle-g, g\rangle) \\
& =\langle f, g\rangle-\langle g, g\rangle
\end{aligned}
$$

Orthogonality and projection

Definition

Let V be an inner product space. For $f, g \in V$, to say that f is orthogonal to g means that $\langle f, g\rangle=0$.

Definition

Let V be an inner product space, and $g \neq 0$ in V. For $f \in V$, we define the projection of f onto g to be

$$
\operatorname{proj}_{g}(f)=\frac{\langle f, g\rangle}{\langle g, g\rangle} g .
$$

Theorem

Let V be an inner product space, and let g be a nonzero element of V. For $f \in V$, we have:

$$
\begin{aligned}
\left\langle\operatorname{proj}_{g}(f), g\right\rangle & =\langle f, g\rangle, \\
\left\langle f-\operatorname{proj}_{g}(f), \operatorname{proj}_{g}(f)\right\rangle & =0 \\
\left\|\operatorname{proj}_{g}(f)\right\| & \leq\|f\|
\end{aligned}
$$

$$
\begin{aligned}
& \langle g, g\rangle=\|g\|^{2}
\end{aligned}
$$

More precisely
coords for V $\frac{\langle t,\rangle\rangle}{\langle g, 9\rangle}$ is g-coord of f.

Cauchy-Schwarz and triangle

Theorem V an IP space. For $f, g \in V$, we have:

1. (Cauchy-Schwarz inequality) $|\langle f, g\rangle| \leq\|f\|\|g\|$; and
2. (Triangle inequality) $\|f+g\| \leq\|f\|+\|g\|$.

Proof of C-S: First show: $|\langle f, g\rangle|=\left\|\operatorname{proj}_{g}(f)\right\|\|g\|$.

$$
\begin{aligned}
& |\langle f, g\rangle|=| |(\operatorname{roj}(\mathrm{f}, \mathrm{n}, \mathrm{~g}\rangle \mid \\
& =\left|\left\langle\frac{\langle t,\rangle}{\langle\mu y, g, g\rangle}\right\rangle\right| \\
& \left.=\left|\frac{\langle t, j\rangle}{\langle\eta, j\rangle}\langle\eta, j\rangle\right|\right\rangle \quad b / c
\end{aligned}
$$

$$
\begin{aligned}
& =\left|\frac{\langle t, g\rangle}{\langle g, g\rangle}\right|\|g\|^{2} \int\langle j, g\rangle=\|g\|^{2} \\
& =\underbrace{\left|\frac{\langle f, g\rangle}{\langle g, s}\right|\|g\| \cdot\|g\|} \\
& \frac{\operatorname{lproj} f_{s}(t)}{} b / c\|a g\|=|a|\|g\| \\
& \left.=\left\|p r o j_{j}^{(-1)}\right\|\|g\|\right)^{b / c} \text { projstrists. } \\
& \leq\|+\|\|g\| \text {. }
\end{aligned}
$$

Proof of triangle inequality $W T s^{\prime}\|f+g\| \leq\|f\|+\|g\|$

$$
\begin{aligned}
& \begin{array}{l}
=2 \mid f\| \| g \|-(\langle f, g\rangle+\overline{\langle f, g)}))\left(\begin{array}{l}
2+\Sigma \\
=2 \operatorname{lez}
\end{array}\right. \\
=2(\|f\|\|g\|-\operatorname{Re}(t, g\rangle)
\end{array} \\
& \geq 2(\|f\|\|g\|-|\langle t, g\rangle|)(\$)
\end{aligned}
$$

Because when we replace $R e<f, g>$ with $\mid\langle f, g\rangle$, we get a expression as a whole smaller (or at least not bigger)

$$
B u t(\theta) \geq 0 \text { by } c-S!
$$

Normed spaces

Definition
V a fn space. A norm on V is $\|\cdot\|: V \rightarrow \mathbb{R}$ s.t.:

1. (Positive definite) For all $f \in V,\|f\| \geq 0$, and if $\|f\|=0$, then $f=0$.
2. (Absolute homogeneity) For all $f \in V$ and $a \in \mathbb{C}$, $\|a f\|=|a|\|f\|$.
3. (Triangle inequality) For all $f, g \in V,\|f+g\| \leq\|f\|+\|g\|$.

A normed space is a fn space with a choice of norm.

Example

V is an IP norm, the IP (or L^{2}) norm on V is a norm as defined above:

- Pos def by defn of IF
- Just proved triangle inequality
- Abs homogeneity:

Other norms
(All norms applied to space of continuous functions on $S^{\wedge} 1$.)
Example $\operatorname{Re}\left(\alpha \|\left.\right|^{\prime}, L^{\infty} d(f, g)=\sup \{1+(x)-\rho(\lambda) \mid\right.$

$$
\|f\|=d(f, 0)=\sup \left\{|f(x)| \mid x \in \mathbb{S}_{\}}^{\prime}\right\}
$$

then $\|\cdot\|$ is a norm on V, called the L^{∞} norm on V.
Example

$$
\int_{s_{1}^{\prime}}^{\text {norm on }}|f(\lambda)| d x
$$

Let $V=C^{0}\left(S^{1}\right)$, and define

We call this the L^{1} norm on V.

$$
\left.\|f\|=\int_{\delta}^{1}|f(x)| d x=\int_{-\frac{1}{2}}^{\frac{1}{2}} \right\rvert\,(f(x) \mid d x
$$

Positive defn: The only way to get a nonneg continuous function to have integral $=0$ is if function $=0(P S 03)$.

So we now have 3 different ways to measure the size of a continuous

$$
\left.\begin{array}{rl}
\|f\|_{2} & =\sqrt{\langle t, t\rangle} \\
& =\left(\int_{S^{\prime}} \mid f(x) \|^{2} d x\right)^{1 / 2} \\
\text { mean } & \text { squared } \\
\text { error }
\end{array}\right]
$$

The norm metric and limits in normed spaces
Let V be a normed space.
Definition
We define the norm metric on V by $d(f, g)=\|f-g\|$.
For a sequence f_{n} in a normed space V and $f \in V$, to say that $\lim _{n \rightarrow \infty} f_{n}=f$ means that:

$$
\begin{aligned}
\forall & >0 \\
& \exists N(\epsilon) s . t .
\end{aligned}
$$

$$
\text { If } h>N(\epsilon)
$$

$$
\text { then }\left\|f_{n}-f\right\|<\epsilon
$$

Different meanings of $f_{n} \rightarrow f$

Let $V=C^{0}([0,1])$, and consider f_{n} in V. Note that we have now defined $\lim _{n \rightarrow \infty} f_{n}=f$ in four different ways:

- Pointwise convergence: For every $x \in[0,1]$, $\lim _{n \rightarrow \infty} f_{n}(x)=f(x)$.
- Uniform, or L^{∞} convergence: If $\|\cdot\|_{\infty}$ is the L^{∞} norm on $C^{0}([0,1])$, then $\lim _{n \rightarrow \infty}\left\|f_{n}-f\right\|_{\infty}=0$, i.e., f_{n} converges uniformly to f on $[0,1]$.
- L^{1} convergence: $\lim _{n \rightarrow \infty} \int_{0}^{1}\left|f_{n}(x)-f(x)\right| d x=0$.
- L2 convergence/inner product norm: If horm USとS

$$
\lim _{n \rightarrow \infty} \int_{0}^{1}\left|f_{n}(x)-f(x)\right|^{2} d x=0
$$

$$
\begin{align*}
& \text { L', notpoirtnise } f=0 \\
& t_{n}={ }^{\prime \prime} \prod_{1 / 2}, \underbrace{}_{1 / 2}, \tag{园}
\end{align*}
$$

So here, for any point x in $[0,1]$, no matter how large we choose N, there will
be some $n>N$ such that $f\left(n(x)=1\right.$. So $f_{-} n$ converges to f nowhere pointwise.
But integrals converge to 0 .

Limit laws in a normed space

Limit laws work in normed spaces pretty much as they work in \mathbb{C}.
Theorem
If f_{n} is a convergent sequence in V, then f_{n} is bounded.
Theorem
Let f_{n} and g_{n} be sequences in V, and suppose that $\lim _{n \rightarrow \infty} f_{n}=f$,
$\lim _{n \rightarrow \infty} g_{n}=g$, and $c \in \mathbb{C}$. Then we have that:

1. $\lim _{n \rightarrow \infty} c f_{n}=c f$; and
2. $\lim _{n \rightarrow \infty}\left(f_{n}+g_{n}\right)=f+g$.

Proofs are the same too.

