Math 131B, Wed Oct 07

- Use a laptop or desktop with a large screen so you can read these words clearly.
- In general, please turn off your camera and mute yourself.
- Exception: When we do groupwork, please turn both your camera and mic on. (Groupwork will not be recorded.)
- Please always have the chat window open to ask questions.
- Reading for today: 6.4, 7.1. Reading for Mon: 7.2.
- PS05 due tonight; outline for PS06 due Fri.
- Problem session Fri Oct 09, 10:00-noon on Zoom.

Fourier series

Definition

$$
t_{N} \text { eries }(x)=\sum_{n}^{N} \hat{f}(n) e_{n}(x)
$$

$f: S^{1} \rightarrow \mathbb{C}$ integrable, and recall

$$
\hat{f}(n)=\int_{0}^{1} f(x) \overline{e_{n}(x)} d x .
$$

We define the Fourier series of f to be:

$$
f(x) \sim \lim _{N \rightarrow \infty} f_{N}(x)=\sum_{n=-\infty}^{\infty} \hat{f}(n) e_{n}(x)=\sum_{n \in \mathbb{Z}} \hat{f}(n) e_{n}(x)
$$

Note that \sim has no implications about convergence, pointwise or otherwise.

The only trig series that converges uniformly to f

If a trig series converges uniformly to f, it must be the Fourier series of f :

Theorem
Let $f: S^{1} \rightarrow \mathbb{C}$ be integrable and let

$$
g_{N}(x)=\sum_{n=-N}^{N} c_{n} e_{n}(x)
$$

be a sequence of trigonometric polynomials such that g_{N} converges to f uniformly on $[0,1]$ (i.e., on S^{1}). Then

$$
\begin{aligned}
& c_{n}=\hat{f}(n)=\int_{0}^{1} f(x) \overline{e_{n}(x)} d x . \\
& \text { petor } l_{\boldsymbol{T}}, \overline{\text { hot } \mathbf{n}} \text {) }
\end{aligned}
$$

Pt $A g_{N}(x)=\sum_{n=N}^{N} c_{n} \ln _{n}(x), g_{N} \rightarrow f$

$$
\begin{aligned}
& \begin{array}{c}
\text { Then } \\
f_{0} r \\
k \in \mathbb{Z},
\end{array} \int_{0}^{1} f(x) \overline{e_{k}(x)} d x \\
& =\int_{0}^{1}\left(\lim _{j \rightarrow \infty} g_{N}(x)\right) \overline{e_{k}(x)} d x \\
& =\lim _{N \rightarrow \infty} \int_{0}^{1} g_{N}(x) \overline{e_{k}(x)} d x
\end{aligned}
$$

$$
\begin{aligned}
& =\lim _{N \rightarrow \infty} \int_{0}^{1}\left(\sum_{n=-N}^{N} c_{n} e_{n}(x)\right) \overline{e_{k}(x)} \lambda_{x}
\end{aligned}
$$

$$
\begin{aligned}
& =c_{k} \cdot 1=c_{k} . S_{0} c_{k}=\int_{0}^{1} f(x) c_{k}(x) d x . \\
& \because
\end{aligned}
$$

Let's be less ambitious

Before we can answer:
MAIN Q: When does $\sum_{n \in \mathbb{Z}} \hat{f}(n) e_{n}(x)$ converge to $f(x)$? And in what sense?

Let's tackle:

$$
\text { When does } \sum_{n \in \mathbb{Z}} \hat{f}(n) e_{n}(x) \text { converge? }
$$

The surprising key: ϵ^{\prime} cont.
Theorem
For $f \in C^{1}\left(S^{1}\right)$ and $n \in \mathbb{Z}$, we have that

Proof: PS06. (Parts!!!!)
$N B$

$$
\frac{d f}{d x}=(2 \pi i n) \hat{f}
$$

So taking Fourier coefficients turns the analytic operation of d / dx into the
algebraic operation of multiplication by (2 pi i in). algebraic operation of multiplication by (2 pi in).

$$
\widehat{f^{\prime}}(n)=(2 \pi i n) \hat{f}(n)
$$

Differentiability implies decay of coefficients
A broadly useful principle!
Theorem
For $f: S^{1} \rightarrow \mathbb{C}$, we have that:

1. If f is continuous (ie., $f \in C^{0}\left(S^{1}\right)$), then there exists some constant $K_{0}>0$, independent of n, such that $|\hat{f}(n)| \leq K_{0}$ for all $n \in \mathbb{Z}$.
2. For any integer $r \geq 1$, if $f \in C^{r}\left(S^{1}\right)$, then there exists some constant $K_{r}>0$, independent of n, such that $|\hat{f}(n)| \leq \frac{K_{r}}{|n|^{r}}$ for all $n \in \mathbb{Z}, n \neq 0$. Fey., if $f \in C^{3}$,
Proof:

$$
(1)(1))_{f}
$$

$$
\Delta \in C\left(s^{\prime}\right) \text { at rate of } 1 /(n)^{3} \text {. }
$$

$$
\begin{aligned}
& |f(n)|=\left|\int_{0}^{1} f(x) \overline{e_{n}(x)} d x\right| \operatorname{tinc}_{\operatorname{tor} \int} \\
& \left.\leqslant \int_{0}^{1} \mid f(x) e_{n}^{T} x\right) \mid d x \\
& =\int_{0}^{1}|f(x)| \underbrace{\left|\overrightarrow{e_{n}(x)}\right|}_{=1}, d x \\
& =\int_{0}^{1}|f(x)| d x=K_{0} .
\end{aligned}
$$

(2) Ind on $r ; r=0{ }^{\prime}$

$$
\begin{aligned}
& \text { (4) If } g \in C^{r},|\hat{g}(n)| \leqslant 0 \leqslant \frac{k_{r}}{|n|^{r}} \\
& \text { (4) } f \in C^{r+1} \text {, } s_{0} f^{\prime} \in C^{r} \text {. } \\
& \Rightarrow\left|\hat{f}^{\rho}(n)\right| \leqslant \frac{k_{n}}{(n)^{r}} \\
& \left.\Rightarrow \quad|(2 \pi / n) \hat{f}(n)| \leq \frac{K_{r}}{(n)^{r}}\right)^{n \neq 0} \\
& |\hat{f}(n)| \leq \frac{K_{r}}{2 \pi|n|^{\pi+1}} \\
& T_{n k e} K_{r+1}=\frac{K_{r}}{2 \pi}
\end{aligned}
$$

Convergence of Fourier series of C^{2} functions

Theorem
If $f \in C^{2}\left(S^{1}\right)$, then the Fourier series of f converges absolutely and uniformly to some continuous function g such that for all $n \in \mathbb{Z}, \hat{g}(n)=\hat{f}(n)$.
Proof: PS06.

But it doesn't obviously follow that $f=g$. What if $\hat{g}(n)=\hat{f}(n)$ for all $n \in \mathbb{Z}$, but $f \neq g$?
To prove that $f=g$, we need either lots of hard detailed work or more abstract theory. We go in the abstract theory direction....

Hilbert Spaces

Inner product spaces

Definition

V be a function pace. An inner product on V is a function $\langle\cdot, \cdot\rangle: V \times V \rightarrow \mathbb{C}$ that satisfies:

1. (Linear in first variable) For any $f, g, h \in V$ and $a, b \in \mathbb{C}$, we have that $\langle a f+b g, h\rangle=a\langle f, h\rangle+b\langle g, h\rangle$.
2. (Hermitian) For any $f, g \in V,\langle g, f\rangle=\overline{\langle f, g\rangle}$. Note that consequently, for any $f \in V,\langle f, f\rangle=\overline{\langle f, f\rangle}$ must be in \mathbb{R}.
3. (Positive definite) For any $f \in V,\langle f, f\rangle \geq 0$, and if $\langle f, f\rangle=0$, then $f=0$.
An IP space is a V along with a particular choice of inner product.
Definition
V an IP space. For $f \in V$, we define the norm of f to be $\|f\|=\sqrt{\langle f, f\rangle}$. We call $\|f\|=\sqrt{\langle f, f\rangle}$ the inner product norm,
or L^{2} norm, on V.
$\langle f, t\rangle=\| f\left(1^{2}\right.$
(Note If $\langle 1\rangle$ an ep on V <t, ag +bo>

$$
=\bar{a}\langle f, g\rangle+\bar{b}\langle f, h\rangle
$$

(steew-I'near)
Note $\|f\|=\sqrt{\langle f, f\rangle}$
$\because \sqrt{\text { bad }}$

$$
\begin{equation*}
\|f\|^{2}=\langle t,-1\rangle \tag{i}
\end{equation*}
$$ good

Examples
Example
For $V=\mathbb{C}^{n}$, the dot product

$$
\left\langle\left(v_{1}, \ldots, v_{n}\right),\left(w_{1}, \ldots, w_{n}\right)\right\rangle=v_{1} \bar{w}_{1}+\cdots+v_{n} \bar{w}_{n}
$$

is an IP on V.
Example

Let $X=[a, b]$ or S^{1}, and let $V=C^{0}(X)$. Then for $f, g \in V$,

$$
\langle f, g\rangle=\int_{x}^{\frac{1}{x}} f(x) \overline{g(x)} d x
$$

is an IP on V (PS06), which we call the L^{2} inner product. Note that

$$
\hat{f}(n)=\int_{0}^{l} f(x) \widehat{e_{n}(x)} d x=\left\langle f, e_{n}\right\rangle .
$$

Orthogonality

Definition
Let V be an inner product space. For $f, g \in V$, to say that f is orthogonal to g means that $\langle f, g\rangle=0$.

Theorem (Pythagorean Theorem)
Let V be an inner product space. If $f, g \in V$ are orthogonal, then $\|f+g\|^{2}=\|f\|^{2}+\|g\|^{2}$.
Proof:
$\|f+g\|^{2}$
$=\langle f+g, f+g\rangle$
$=\langle f, f\rangle+\langle g$,
$=\|f\|^{2}$

Projection

Definition

Let V be an inner product space, and $g \neq 0$ in V. For $f \in V$, we define the projection of f onto g to be

Theorem

$$
\operatorname{proj}_{g}(f)=\frac{\langle f, g\rangle}{\langle g, g\rangle} g
$$

Let V be an inner product space, and let g be a nonzero element of V. For $f \in V$, we have:

$$
\begin{aligned}
\left\langle\operatorname{proj}_{g}(f), g\right\rangle & =\langle f, g\rangle, \\
\left\langle f-\operatorname{proj}_{g}(f), g\right\rangle & =0, \\
\left\langle f-\operatorname{proj}_{g}(f), \operatorname{proj}_{g}(f)\right\rangle & =0, \\
\left\|\operatorname{proj}_{g}(f)\right\| & \leq\|f\| .
\end{aligned}
$$

Cauchy-Schwarz and triangle

Theorem
V an IP space. For $f, g \in V$, we have:

1. (Cauchy-Schwarz inequality) $|\langle f, g\rangle| \leq\|f\|\|g\|$; and
2. (Triangle inequality) $\|f+g\| \leq\|f\|+\|g\|$.

Proof of C-S: First show: $|\langle f, g\rangle|=\left\|\operatorname{proj}_{g}(f)\right\|\|g\|$.

Proof of triangle inequality

Normed spaces

Definition

V a fn space. A norm on V is $\|\cdot\|: V \rightarrow \mathbb{R}$ s.t.:

1. (Positive definite) For all $f \in V,\|f\| \geq 0$, and if $\|f\|=0$, then $f=0$.
2. (Absolute homogeneity) For all $f \in V$ and $a \in \mathbb{C}$, $\|a f\|=|a|\|f\|$.
3. (Triangle inequality) For all $f, g \in V,\|f+g\| \leq\|f\|+\|g\|$.

A normed space is a fn space with a choice of norm.

Example

V is an IP norm, the IP norm on V is a norm as defined above:

- Pos def by defn of IP
- Just proved triangle inequality
- Abs homogeneity:

