
Math 131B, Wed Oct 07

I Use a laptop or desktop with a large screen so you can read
these words clearly.

I In general, please turn off your camera and mute yourself.

I Exception: When we do groupwork, please turn both your
camera and mic on. (Groupwork will not be recorded.)

I Please always have the chat window open to ask questions.

I Reading for today: 6.4, 7.1. Reading for Mon: 7.2.

I PS05 due tonight; outline for PS06 due Fri.

I Problem session Fri Oct 09, 10:00–noon on Zoom.



Fourier series

Definition
f : S1 → C integrable, and recall

f̂ (n) =

∫ 1

0
f (x) en(x) dx .

We define the Fourier series of f to be:

f (x) ∼ lim
N→∞

fN(x) =
∞∑

n=−∞
f̂ (n)en(x) =

∑
n∈Z

f̂ (n)en(x).

Note that ∼ has no implications about convergence, pointwise or
otherwise.



The only trig series that converges uniformly to f

If a trig series converges uniformly to f , it must be the Fourier
series of f :

Theorem
Let f : S1 → C be integrable and let

gN(x) =
N∑

n=−N
cnen(x)

be a sequence of trigonometric polynomials such that gN
converges to f uniformly on [0, 1] (i.e., on S1). Then

cn = f̂ (n) =

∫ 1

0
f (x) en(x) dx .







Let’s be less ambitious

Before we can answer:

MAIN Q: When does
∑
n∈Z

f̂ (n)en(x) converge to f (x)?

And in what sense?

Let’s tackle:

When does
∑
n∈Z

f̂ (n)en(x) converge?

The surprising key:

Theorem
For f ∈ C 1(S1) and n ∈ Z, we have that

f̂ ′(n) = (2πin)f̂ (n).

Proof: PS06. (Parts!!!!)





Differentiability implies decay of coefficients
A broadly useful principle!

Theorem
For f : S1 → C, we have that:

1. If f is continuous (i.e., f ∈ C 0(S1)), then there exists some

constant K0 > 0, independent of n, such that
∣∣∣f̂ (n)

∣∣∣ ≤ K0 for

all n ∈ Z.
2. For any integer r ≥ 1, if f ∈ C r (S1), then there exists some

constant Kr > 0, independent of n, such that
∣∣∣f̂ (n)

∣∣∣ ≤ Kr

|n|r
for all n ∈ Z, n 6= 0.

Proof:







Convergence of Fourier series of C 2 functions

Theorem
If f ∈ C 2(S1), then the Fourier series of f converges absolutely
and uniformly to some continuous function g such that for all
n ∈ Z, ĝ(n) = f̂ (n).

Proof: PS06.

But it doesn’t obviously follow that f = g . What if ĝ(n) = f̂ (n)
for all n ∈ Z, but f 6= g?
To prove that f = g , we need either lots of hard detailed work or
more abstract theory. We go in the abstract theory direction. . . .



Inner product spaces

Definition
V be a function space. An inner product on V is a function
〈·, ·〉 : V × V → C that satisfies:

1. (Linear in first variable) For any f , g , h ∈ V and a, b ∈ C, we
have that 〈af + bg , h〉 = a 〈f , h〉+ b 〈g , h〉.

2. (Hermitian) For any f , g ∈ V , 〈g , f 〉 = 〈f , g〉. Note that
consequently, for any f ∈ V , 〈f , f 〉 = 〈f , f 〉 must be in R.

3. (Positive definite) For any f ∈ V , 〈f , f 〉 ≥ 0, and if
〈f , f 〉 = 0, then f = 0.

An IP space is a V along with a particular choice of inner product.

Definition
V an IP space. For f ∈ V , we define the norm of f to be
‖f ‖ =

√
〈f , f 〉. We call ‖f ‖ =

√
〈f , f 〉 the inner product norm,

or L2 norm, on V .





Examples

Example

For V = Cn, the dot product

〈(v1, . . . , vn), (w1, . . . ,wn)〉 = v1w1 + · · ·+ vnwn

is an IP on V .

Example

Let X = [a, b] or S1, and let V = C 0(X ). Then for f , g ∈ V ,

〈f , g〉 =

∫
X
f (x)g(x) dx

is an IP on V (PS06), which we call the L2 inner product. Note
that

f̂ (n) =



Orthogonality

Definition
Let V be an inner product space. For f , g ∈ V , to say that f is
orthogonal to g means that 〈f , g〉 = 0.

Theorem (Pythagorean Theorem)

Let V be an inner product space. If f , g ∈ V are orthogonal, then
‖f + g‖2 = ‖f ‖2 + ‖g‖2.
Proof:



Projection

Definition
Let V be an inner product space, and g 6= 0 in V . For f ∈ V , we
define the projection of f onto g to be

projg (f ) =
〈f , g〉
〈g , g〉

g .

Theorem
Let V be an inner product space, and let g be a nonzero element
of V . For f ∈ V , we have: 〈

projg (f ), g
〉

= 〈f , g〉 ,〈
f − projg (f ), g

〉
= 0,〈

f − projg (f ), projg (f )
〉

= 0,∥∥projg (f )
∥∥ ≤ ‖f ‖ .



Cauchy-Schwarz and triangle

Theorem
V an IP space. For f , g ∈ V , we have:

1. (Cauchy-Schwarz inequality) |〈f , g〉| ≤ ‖f ‖ ‖g‖; and
2. (Triangle inequality) ‖f + g‖ ≤ ‖f ‖+ ‖g‖.

Proof of C-S: First show: |〈f , g〉| =
∥∥projg (f )

∥∥ ‖g‖.



Proof of triangle inequality



Normed spaces

Definition
V a fn space. A norm on V is ‖·‖ : V → R s.t.:

1. (Positive definite) For all f ∈ V , ‖f ‖ ≥ 0, and if ‖f ‖ = 0,
then f = 0.

2. (Absolute homogeneity) For all f ∈ V and a ∈ C,
‖af ‖ = |a| ‖f ‖.

3. (Triangle inequality) For all f , g ∈ V , ‖f + g‖ ≤ ‖f ‖+ ‖g‖.
A normed space is a fn space with a choice of norm.

Example

V is an IP norm, the IP norm on V is a norm as defined above:

I Pos def by defn of IP

I Just proved triangle inequality

I Abs homogeneity:


