Math 131B, Sep 30 Mon OcT5

- Use a laptop or desktop with a large screen so you can read these words clearly.
- In general, please turn off your camera and mute yourself.
- Exception: When we do groupwork, please turn both your camera and mic on. (Groupwork will not be recorded.)
- Please always have the chat window open to ask questions.
- Reading for today: 5.3, 6.1-6.2. Reading for Wed: 6.4, 7.1.
- New deadlines: PS05 due Wed; outline for PS06 due Fri.
- Problem session Fri Oct 09, 10:00-noon on Zoom.

Outlines for PS05 accepted tonight.
Exam 2 in two weeks.

Spaces of periodic functions
Definition
To say that the domain of a function f is S^{1} means:

- The domain of f is \mathbb{R}; and
- For all $x \in \mathbb{R}, f(x+1)=f(x)$, ie., f is periodic with period 1.

Why is this a circle? Picture:

Function spaces on S^{1}

Continuity, limits, and derivatives defined as usual. Integral: To say that $f: S^{1} \rightarrow \mathbb{C}$ is integrable means that

$$
\int_{S^{1}} f(x) d x=\int_{0}^{1} f(x) d x=\int_{-\frac{1}{2}}^{\frac{1}{2}} f(x) d x
$$

exists.
Again, we have:

$$
(a n y[a, a+1])
$$

$$
\mathcal{R}\left(S^{1}\right) \supset C^{0}\left(S^{1}\right) \supset C^{1}\left(S^{1}\right) \supset C^{2}\left(S^{1}\right) \supset \cdots \supset C^{\infty}\left(S^{1}\right)
$$

Metrics on function spaces

One important idea we'll use a lot is the idea of putting a metric on a function space, i.e., a function that determines the distance between two functions in the space.

Definition

X a closed and bounded subset of \mathbb{C} and $f, g \in C^{0}(X)$. We define

$$
d(f, g)=\sup \{|f(x)-g(x)| \mid x \in X\} .
$$

I.e., $d(f, g)$ is the worst-case scenario of the difference between $f(x)$ and $g(x)$.
Theorem
For X a closed and bounded subset of $\mathbb{C}, d(f, g)$ defines a metric on $C^{0}(X)$.

Dot products

Dot product $\cdot: \mathbb{R}^{n} \times \mathbb{R}^{n} \rightarrow \mathbb{R}$ is defined to be

$$
\left(x_{1}, \ldots, x_{n}\right) \cdot\left(y_{1}, \ldots, y_{n}\right)=x_{1} y_{1}+\cdots+x_{n} y_{n}
$$

for all $\left(x_{1}, \ldots, x_{n}\right),\left(y_{1}, \ldots, y_{n}\right) \in \mathbb{R}^{n}$.
For $v, w, x \in \mathbb{R}^{n}$ and $c \in \mathbb{R}$, we have

- $v \cdot w=w \cdot v$. symmetric
- $(v+w) \cdot x=v \cdot x+w \cdot x$. linear in each variable
- $(c v) \cdot w=c(v \cdot w)$.
- If $x=\left(x_{1}, \ldots, x_{n}\right)$, then $x \cdot x=x_{1}^{2}+\cdots+x_{n}^{2}$. x dot x is the squared length of x

Orthogonality

Can use dot products to define not just length, but also angles.

- If $v, w \in \mathbb{R}^{n}$, to say that v and w are orthogonal means that $v \cdot w=0$.
- To say that $\left\{v_{1}, \ldots, v_{n}\right\}$ is orthonormal means:

$$
v_{i} \cdot v_{j}=\left\{\begin{array}{lll}
1 & \text { if } i=j, & \text { normal } \\
0 & \text { if } i \neq j, & \text { ortho }
\end{array}\right.
$$

Arl orthonormal set of size n gives "unit coordinate axes" for \mathbb{R}^{n}. Coordinates with respect to those unit coordinate axes can be conveniently computed: If $\left\{v_{1}, \ldots, v_{n}\right\}$ is an orthonormal set in \mathbb{R}^{n} and

$$
w=a_{1} v_{1}+\cdots+a_{n} v_{n}
$$

for some $w \in \mathbb{R}^{n}$, then $a_{i}=w \cdot v_{i}$.

Summary

To study functions on S^{1} (functions on \mathbb{R} that are periodic with period 1):

- We look at a function space V like $C^{0}\left(S^{1}\right), C^{1}\left(S^{1}\right), C^{\infty}\left(S^{1}\right)$.
- Define a metric $d(f, g)$ on V based on something like mean squared error between f and g.
- Surprise: It turns out that the distance $d(f, g)$ is then closely related to a generalized dot product! So we can do geometry and orthogonality in V.

Trignometric polynomials

$$
e_{n}(x)=e^{2 \pi i n x}=\cos (2 \pi n x)+
$$

We finally define our central objects of study! i $\sin (2 \pi n x)$
Definition
A trigonometric polynomial of degree N is $p: S^{1} \rightarrow \mathbb{C}$ of the form

$$
\begin{aligned}
& p(x)=\sum_{n=-N}^{N} c_{n} e_{n}(x)=c_{-N} e_{-N}(x)\left(c_{-N+1} e_{-N+1}(x)\right.
\end{aligned}
$$

for some coefficients $c_{n} \in \mathbb{C}$, where $e_{n}(x)=e^{2 \pi i n x} .+\cdots \not C_{N} e_{N}(X)$
Q: Which trigonometric polynomials best approximate a given $f: S^{1} \rightarrow \mathbb{C}$ on average?

Good approximations must have same integral properties

 For $p(x)=\sum_{n=-N}^{N} c_{n} e_{n}(x)$ to approximate $f(x)$ well, should havesame integral on S^{1}. Better yet, should have same "integral against $e_{n}(x)$ ", ie., we want

$$
\int_{0}^{1} p(x) \overline{e_{n}(x)} d x=\int_{0}^{1} f(x) \overline{e_{n}(x)} d x
$$

Theorem (PSO6)
For $-N \leq n \leq N$, we have

$$
\int_{0}^{1} p(x) \overline{e_{n}(x)} d x=c_{n} \cdot \sum_{p(x)=-N}^{N} c_{n} e_{n}(x)
$$

Therefore, we guess that a trig poly that approximates f well on average will have $c_{n}=\int_{0}^{1} f(x) \overline{e_{n}(x)} d x$.

The N th Fourier polynomial of f

$e_{k}(x)=e^{2 \pi i \operatorname{tit}}$

Definition

Let $f: S^{1} \rightarrow \mathbb{C}$ be integrable. For $n \in \mathbb{Z}$, we define

$$
\hat{f}(n)=\int_{0}^{1} f(x) \overline{e_{n}(x)} d x
$$

to be the nth Fourier coefficient of f. We define the N th Fourier polynomial f_{N} of f to be

$$
f_{N}(x)=\sum_{n=-N}^{N} \hat{f}(n) e_{n}(x)
$$

In other words, $f_{N}(x)$ is the trigonometric polynomial of degree N whose coefficients are the Fourier coefficients $\hat{f}(n)$.

Fourier series

Definition
$f: S^{1} \rightarrow \mathbb{C}$ integrable, and recall

$$
\hat{f}(n)=\int_{0}^{1} f(x) \overline{e_{n}(x)} d x
$$

We define the Fourier series of f to be:

$$
f(x) \sim \lim _{N \rightarrow \infty} f_{N}(x)=\sum_{n=-\infty}^{\infty} \hat{f}(n) e_{n}(x)=\sum_{n \in \mathbb{Z}} \hat{f}(n) e_{n}(x)
$$

Note that \sim has no implications about convergence, pointwise or otherwise.
MAIN Q: When does $\sum_{n \in \mathbb{Z}} \hat{f}(n) e_{n}(x)$ converge to $f(x)$? (Better Q:
And in what sense?)
$\underset{\text { Let } f: S^{1} \rightarrow \mathbb{C}}{\text { Example given by }} \quad \underset{e_{h}(\lambda)}{e_{0}(x)}=e^{-2 \pi i n x}$

$$
\begin{array}{lll}
f(x)=x \\
\text { er series of } f . & \text { for }-\frac{1}{2} \leq x<\frac{1}{2} . & y=F(x) \\
n \neq 0 \text { : }
\end{array}
$$

Recall that for $n \neq 0$:

$$
\int x \overline{e_{n}(x)} d x=-\frac{x e_{-n}(x)}{2 \pi i n}-\frac{e_{-n}(x)}{(2 \pi i n)^{2}}+C
$$

When you compute Fourier coefficients, do $n=0$ separately.
$n=0$

$$
\text { (1) } \begin{aligned}
& \left.\hat{f}(0)=\int_{\frac{1}{2}}^{\frac{1}{2}} x d x=\frac{x^{2}}{2}\right]_{-1 / 2}^{1 / 2} \\
= & \frac{1}{2}\left(\left(\frac{1}{2}\right)^{2}-\left(-\frac{1}{2}\right)^{2}\right)=0
\end{aligned}
$$

$$
\begin{aligned}
& \frac{n \neq 0)}{\hat{f}(n)}=\int_{-\frac{1}{2}}^{\frac{1}{2}} x \overline{e_{n}(x)} d x \\
& \left.=-\frac{x e_{-n}(x)}{2 \pi i n}-\frac{e_{-n}(x)}{(2 \pi i n)^{2}}\right]_{-\frac{1}{2}}^{1 / 2} \\
& =-\frac{e_{-n}\left(\frac{1}{2}\right)^{2}}{4 \pi i n}-\frac{e_{-n}\left(\frac{1}{2}\right)}{2 \pi i n)^{2}} \\
& +\left(-\frac{1}{2}\right) \frac{e_{-n}\left(-\frac{1}{2}\right)}{2 \pi i n}+\frac{e_{-n}\left(-\frac{1}{2}\right)}{(2 \pi i n)^{2}}
\end{aligned}
$$

$$
\begin{aligned}
& e_{-n}\binom{1}{2}=e^{2 \pi \cdot n\left(\frac{1}{2}\right)}=e^{\pi i n}=(-1)^{n} \\
& e_{-n}\left(-\frac{1}{2}\right)=(-1)^{n} \\
&=-\frac{(-1)^{n}}{4 \pi i n}-\frac{(-1)}{(2 \pi i n)^{2}}-\frac{(-1)^{n}}{4 \pi i n}+\frac{(-1 y}{(2 \pi i n)^{2}} \\
&=- \frac{\left(-11^{n}\right.}{2 \pi i n} \quad \quad 7(n)=\frac{1}{2 \pi i} \\
&(n \neq 0) f(2)=-\frac{1}{4 \pi i} .
\end{aligned}
$$

$c_{2}(x)=-\operatorname{AN} \sim(x \rightarrow+i$ Mhn
$f(x) n_{\ldots},-\frac{1}{2 \pi i} e_{-1}^{*} \partial e_{0}(x)+\frac{1}{2 \pi i} e_{1}-\frac{1}{4 \pi i} e_{0}$

Let's be less ambitious

Before we can answer:

MAIN Q: When does $\sum_{n \in \mathbb{Z}} \hat{f}(n) e_{n}(x)$ converge to $f(x)$?

 And in what sense?Let's tackle:

$$
\text { When does } \sum_{n \in \mathbb{Z}} \hat{f}(n) e_{n}(x) \text { converge? }
$$

The surprising key:
Theorem
For $f \in C^{1}\left(S^{1}\right)$ and $n \in \mathbb{Z}$, we have that

$$
\widehat{f}^{\prime}(n)=(2 \pi i n) \hat{f}(n)
$$

Proof: PS06. (Parts!!!!)

Differentiability implies decay of coefficients

A broadly useful principle!
Theorem
For $f: S^{1} \rightarrow \mathbb{C}$, we have that:

1. If f is continuous (i.e., $f \in C^{0}\left(S^{1}\right)$), then there exists some constant $K_{0}>0$, independent of n, such that $|\hat{f}(n)| \leq K_{0}$ for all $n \in \mathbb{Z}$.
2. For any integer $r \geq 1$, if $f \in C^{r}\left(S^{1}\right)$, then there exists some constant $K_{r}>0$, independent of n, such that $|\hat{f}(n)| \leq \frac{K_{r}}{|n|^{r}}$ for all $n \in \mathbb{Z}, n \neq 0$.
Proof:
