Math 131B, Wed Sep 30 Mon O-15

- Use a laptop or desktop with a large screen so you can read these words clearly.
- In general, please turn off your camera and mute yourself.
- Exception: When we do groupwork, please turn both your camera and mic on. (Groupwork will not be recorded.)
- Please always have the chat window open to ask questions.
- Reading for today: 5.3, 6.1–6.2. Reading for Wed: 6.4, 7.1.
- ▶ New deadlines: PS05 due Wed; outline for PS06 due Fri.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Problem session Fri Oct 09, 10:00–noon on Zoom.

Outlines for PS05 accepted tonight.

Exam 2 in two weeks.

Spaces of periodic functions

Definition

To say that the domain of a function f is S^1 means:

- The domain of f is \mathbb{R} ; and
- For all x ∈ ℝ, f(x + 1) = f(x), i.e., f is periodic with period 1.

Function spaces on S^1

Continuity, limits, and derivatives defined as usual. Integral: To say that $f: S^1 \to \mathbb{C}$ is integrable means that

$$\int_{S^{1}} f(x) \, dx = \int_{0}^{1} f(x) \, dx = \int_{-\frac{1}{2}}^{\frac{1}{2}} f(x) \, dx$$

$$(any[a,g+i])$$

exists.

Again, we have:

 $\mathcal{R}(S^1) \supset C^0(S^1) \supset C^1(S^1) \supset C^2(S^1) \supset \cdots \supset C^\infty(S^1).$

Metrics on function spaces

One important idea we'll use a lot is the idea of putting a metric on a function space, i.e., a function that determines the distance between two functions in the space.

Definition

X a closed and bounded subset of \mathbb{C} and $f,g \in C^0(X)$. We define

$$d(f,g) = \sup \{ |f(x) - g(x)| \mid x \in X \}.$$

I.e., d(f,g) is the worst-case scenario of the difference between f(x) and g(x).

Theorem

For X a closed and bounded subset of \mathbb{C} , d(f,g) defines a metric on $C^0(X)$.

Dot products

Dot product $\cdot : \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$ is defined to be

$$(x_1,\ldots,x_n)\cdot(y_1,\ldots,y_n)=x_1y_1+\cdots+x_ny_n$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

for all $(x_1, \ldots, x_n), (y_1, \ldots, y_n) \in \mathbb{R}^n$. For $v, w, x \in \mathbb{R}^n$ and $c \in \mathbb{R}$, we have

$$\blacktriangleright v \cdot w = w \cdot v$$
. symmetric

•
$$(v + w) \cdot x = v \cdot x + w \cdot x$$
. linear in each variable
• $(cv) \cdot w = c(v \cdot w)$.

• If
$$x = (x_1, ..., x_n)$$
, then $x \cdot x = x_1^2 + \cdots + x_n^2$.

x dot x is the squared length of x

Orthogonality

Can use dot products to define not just length, but also angles.

▶ If $v, w \in \mathbb{R}^n$, to say that v and w are **orthogonal** means that $v \cdot w = 0$.

• To say that $\{v_1, \ldots, v_n\}$ is **orthonormal** means:

$$m{v}_i\cdotm{v}_j=egin{cases} 1 & ext{if }i=j, \quad ext{normal}\ 0 & ext{if }i
eq j. \quad ext{ortho} \end{cases}$$

(X (V CI SE) ADDA BDA EDAED E DAG

An orthonormal set of size *n* gives "unit coordinate axes" for \mathbb{R}^n . Coordinates with respect to those unit coordinate axes can be conveniently computed: If $\{v_1, \ldots, v_n\}$ is an orthonormal set in \mathbb{R}^n and

$$w = a_1 v_1 + \cdots + a_n v_n$$

for some $w \in \mathbb{R}^n$, then $a_i = w \cdot v_i$.

Summary

To study functions on S^1 (functions on \mathbb{R} that are periodic with period 1):

- We look at a function space V like $C^0(S^1)$, $C^1(S^1)$, $C^{\infty}(S^1)$.
- Define a metric d(f,g) on V based on something like mean squared error between f and g.
- Surprise: It turns out that the distance d(f, g) is then closely related to a generalized dot product! So we can do geometry and orthogonality in V.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Trignometric polynomials

$e_{n(x)} = e^{2\pi i nx} = \cos(2\pi nx) +$ We finally define our central objects of study! $\int \sin(2\pi nx)$

Definition

A trigonometric polynomial of degree N is $p: S^1 \to \mathbb{C}$ of the $= C_{-N} e_{-N} (x)$ + $C_{-N+1} e_{-N+1} (x)$ form Ν

$$p(x) = \sum_{n=-N} c_n e_n(x)$$

・ ロ ト ・ 西 ト ・ 日 ト ・ 日 ト

for some coefficients $c_n \in \mathbb{C}$, where $e_n(x) = e^{2\pi i n x}$.

Q: Which trigonometric polynomials best approximate a given $f: S^1 \to \mathbb{C}$ on average?

Good approximations must have same integral properties For $p(x) = \sum c_n e_n(x)$ to approximate f(x) well, should have n = -Nsame integral on S^1 . Better yet, should have same "integral against $e_n(x)$ ", i.e., we want $\int_0^1 p(x)\overline{e_n(x)}\,dx = \int_0^1 f(x)\overline{e_n(x)}\,dx.$ Theorem $(P \leq D \leq)$ For $-N \leq n \leq N$, we have P(x) = N $\int_0^1 p(x) \overline{e_n(x)} \, dx = c_n.$ < r en(x) Therefore, we guess that a trig polythat approximates f well on average will have $c_n = \int_{-\infty}^{1} f(x) \overline{e_n(x)} dx$.

The Nth Fourier polynomial of f

Definition

Let $f: S^1 \to \mathbb{C}$ be integrable. For $n \in \mathbb{Z}$, we define

$$\hat{f}(n) = \int_0^1 f(x) \,\overline{e_n(x)} \, dx$$

to be the *n*th Fourier coefficient of f. We define the *N*th Fourier polynomial f_N of f to be

$$f_N(x) = \sum_{n=-N}^N \hat{f}(n) e_n(x).$$

In other words, $f_N(x)$ is the trigonometric polynomial of degree N whose coefficients are the Fourier coefficients $\hat{f}(n)$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Fourier series

 $\begin{array}{l} \mbox{Definition} \\ f: S^1 \rightarrow \mathbb{C} \mbox{ integrable, and recall} \end{array}$

$$\hat{f}(n) = \int_0^1 f(x) \,\overline{e_n(x)} \, dx.$$

We define the **Fourier series of** f to be:

$$f(x) \sim \bigvee_{N \to \infty} \widehat{f_N(x)} = \sum_{n = -\infty}^{\infty} \widehat{f}(n) e_n(x) = \sum_{n \in \mathbb{Z}} \widehat{f}(n) e_n(x)$$

Note that \sim has no implications about convergence, pointwise or otherwise.

MAIN Q: When does $\sum_{n \in \mathbb{Z}} \hat{f}(n)e_n(x)$ converge to f(x)? (Better Q: And in what sense?)

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

 $e_{-n}(\frac{1}{2}) = e^{2\pi i n (\frac{1}{2})} = e^{\pi i n} = (-1)^n$ e- (-1)=(1)" 4 Trin (2Tring - (-11" + (-1)" 4 Trin (2Tring - 4 Trin + PETring (-1)" 211 チャシュー (-1) 7(-1)= (n70) f(n)= 2 min 71-2)=+ +

Let's be less ambitious

Before we can answer:

MAIN Q: When does
$$\sum_{n \in \mathbb{Z}} \hat{f}(n)e_n(x)$$
 converge to $f(x)$?
And in what sense?

Let's tackle:

When does
$$\sum_{n \in \mathbb{Z}} \hat{f}(n)e_n(x)$$
 converge?

The surprising key:

Theorem For $f \in C^1(S^1)$ and $n \in \mathbb{Z}$, we have that

$$\widehat{f'}(n) = (2\pi i n)\widehat{f}(n).$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Proof: PS06. (Parts!!!!)

Differentiability implies decay of coefficients

A broadly useful principle!

Theorem For $f : S^1 \to \mathbb{C}$, we have that:

- 1. If f is continuous (i.e., $f \in C^0(S^1)$), then there exists some constant $K_0 > 0$, independent of n, such that $|\hat{f}(n)| \leq K_0$ for all $n \in \mathbb{Z}$.
- 2. For any integer $r \ge 1$, if $f \in C^r(S^1)$, then there exists some constant $K_r > 0$, independent of n, such that $\left| \hat{f}(n) \right| \le \frac{K_r}{\left| n \right|^r}$ for all $n \in \mathbb{Z}$, $n \ne 0$.

Proof: