
Math 131B, Wed Sep 30

I Use a laptop or desktop with a large screen so you can read
these words clearly.

I In general, please turn off your camera and mute yourself.

I Exception: When we do groupwork, please turn both your
camera and mic on. (Groupwork will not be recorded.)

I Please always have the chat window open to ask questions.

I Reading for today: 5.3, 6.1–6.2. Reading for Wed: 6.4, 7.1.

I New deadlines: PS05 due Wed; outline for PS06 due Fri.

I Problem session Fri Oct 09, 10:00–noon on Zoom.



Spaces of periodic functions

Definition
To say that the domain of a function f is S1 means:

I The domain of f is R; and

I For all x ∈ R, f (x + 1) = f (x), i.e., f is periodic with period
1.

Why is this a circle? Picture:



Function spaces on S1

Continuity, limits, and derivatives defined as usual.
Integral: To say that f : S1 → C is integrable means that∫

S1

f (x) dx =

∫ 1

0
f (x) dx =

∫ 1
2

− 1
2

f (x) dx

exists.
Again, we have:

R(S1) ⊃ C 0(S1) ⊃ C 1(S1) ⊃ C 2(S1) ⊃ · · · ⊃ C∞(S1).



Metrics on function spaces

One important idea we’ll use a lot is the idea of putting a metric
on a function space, i.e., a function that determines the distance
between two functions in the space.

Definition
X a closed and bounded subset of C and f , g ∈ C 0(X ). We define

d(f , g) = sup {|f (x)− g(x)| | x ∈ X} .

I.e., d(f , g) is the worst-case scenario of the difference between
f (x) and g(x).

Theorem
For X a closed and bounded subset of C, d(f , g) defines a metric
on C 0(X ).



Dot products

Dot product · : Rn × Rn → R is defined to be

(x1, . . . , xn) · (y1, . . . , yn) = x1y1 + · · ·+ xnyn

for all (x1, . . . , xn), (y1, . . . , yn) ∈ Rn.
For v ,w , x ∈ Rn and c ∈ R, we have

I v · w = w · v .

I (v + w) · x = v · x + w · x .

I (cv) · w = c(v · w).

I If x = (x1, . . . , xn), then x · x = x21 + · · ·+ x2n .



Orthogonality

Can use dot products to define not just length, but also angles.

I If v ,w ∈ Rn, to say that v and w are orthogonal means that
v · w = 0.

I To say that {v1, . . . , vn} is orthonormal means:

vi · vj =

{
1 if i = j ,

0 if i 6= j .

An orthonormal set of size n gives “unit coordinate axes” for Rn.
Coordinates with respect to those unit coordinate axes can be
conveniently computed: If {v1, . . . , vn} is an orthonormal set in Rn

and
w = a1v1 + · · ·+ anvn

for some w ∈ Rn, then ai = w · vi .



Summary

To study functions on S1 (functions on R that are periodic with
period 1):

I We look at a function space V like C 0(S1), C 1(S1), C∞(S1).

I Define a metric d(f , g) on V based on something like mean
squared error between f and g .

I Surprise: It turns out that the distance d(f , g) is then closely
related to a generalized dot product! So we can do geometry
and orthogonality in V .



Trignometric polynomials

We finally define our central objects of study!

Definition
A trigonometric polynomial of degree N is p : S1 → C of the
form

p(x) =
N∑

n=−N
cnen(x)

for some coefficients cn ∈ C, where en(x) = e2πinx .

Q: Which trigonometric polynomials best approximate a given
f : S1 → C on average?



Good approximations must have same integral properties

For p(x) =
N∑

n=−N
cnen(x) to approximate f (x) well, should have

same integral on S1. Better yet, should have same “integral
against en(x)”, i.e., we want∫ 1

0
p(x)en(x) dx =

∫ 1

0
f (x)en(x) dx .

Theorem
For −N ≤ n ≤ N, we have∫ 1

0
p(x) en(x) dx = cn.

Therefore, we guess that a trig poly that approximates f well on

average will have cn =

∫ 1

0
f (x)en(x) dx .



The Nth Fourier polynomial of f

Definition
Let f : S1 → C be integrable. For n ∈ Z, we define

f̂ (n) =

∫ 1

0
f (x) en(x) dx

to be the nth Fourier coefficient of f . We define the Nth
Fourier polynomial fN of f to be

fN(x) =
N∑

n=−N
f̂ (n)en(x).

In other words, fN(x) is the trigonometric polynomial of degree N
whose coefficients are the Fourier coefficients f̂ (n).



Fourier series

Definition
f : S1 → C integrable, and recall

f̂ (n) =

∫ 1

0
f (x) en(x) dx .

We define the Fourier series of f to be:

f (x) ∼ lim
N→∞

fN(x) =
∞∑

n=−∞
f̂ (n)en(x) =

∑
n∈Z

f̂ (n)en(x).

Note that ∼ has no implications about convergence, pointwise or
otherwise.
MAIN Q: When does

∑
n∈Z

f̂ (n)en(x) converge to f (x)? (Better Q:

And in what sense?)



Example
Let f : S1 → C be given by

f (x) = x for −1

2
≤ x <

1

2
.

Find the Fourier series of f .
Recall that for n 6= 0:∫

x en(x) dx = −xe−n(x)

2πin
− e−n(x)

(2πin)2
+ C









Let’s be less ambitious

Before we can answer:

MAIN Q: When does
∑
n∈Z

f̂ (n)en(x) converge to f (x)?

And in what sense?

Let’s tackle:

When does
∑
n∈Z

f̂ (n)en(x) converge?

The surprising key:

Theorem
For f ∈ C 1(S1) and n ∈ Z, we have that

f̂ ′(n) = (2πin)f̂ (n).

Proof: PS06. (Parts!!!!)



Differentiability implies decay of coefficients
A broadly useful principle!

Theorem
For f : S1 → C, we have that:

1. If f is continuous (i.e., f ∈ C 0(S1)), then there exists some

constant K0 > 0, independent of n, such that
∣∣∣f̂ (n)

∣∣∣ ≤ K0 for

all n ∈ Z.

2. For any integer r ≥ 1, if f ∈ C r (S1), then there exists some

constant Kr > 0, independent of n, such that
∣∣∣f̂ (n)

∣∣∣ ≤ Kr

|n|r
for all n ∈ Z, n 6= 0.

Proof:


