Math 131B, Wed Sep 30

- Use a laptop or desktop with a large screen so you can read these words clearly.
- In general, please turn off your camera and mute yourself.
- Exception: When we do groupwork, please turn both your camera and mic on. (Groupwork will not be recorded.)
- Please always have the chat window open to ask questions.
- Reading for today: 5.1-5.3. Reading for Mon: 6.1-6.2.
- PS05 due Mon.
- Problem session Fri Oct 02, 10:00-noon on Zoom.

Review: Setting up a continuity proof (limit proofs similar)
X, Y metric spaces, $a \in X, f: X \rightarrow Y$, and for all $x \in X$,

$$
d(f(x), f(a)) \leq \sqrt[3]{d(x, a)}
$$

Prove f is continuous at a.

$$
\begin{aligned}
& \text { A. }) \in>0 \\
& \text { Pick } \delta(\epsilon)=\epsilon^{3}
\end{aligned}
$$

Note: If we were relying on given continuity of g , h , etc., we would need a delta_1, delta_2, etc. that encodes continuity of g, h, etc.

$$
d(x, a)<8(\varepsilon)=\epsilon^{3}
$$

$$
\Rightarrow \sqrt[3]{d(x, a)}<\epsilon
$$

$$
\begin{aligned}
& \Rightarrow d(f(x),-G)) \leq \sqrt[3]{d(x, 1)}<G \\
& {\left[C_{3}\right] d(f(x), f(a)<\epsilon} \\
& C_{2}(I f d(x, a)<S(A) \text { then } d f(x), F(a) \\
& \text { (c) } \exists \delta(\epsilon)>0 \text { s., it ... }<\epsilon \\
& \text { (C) } \\
& \Rightarrow \delta(x)>0 \text { st. } \\
& \text { If } d(x, a)<\delta(t) \\
& \text { Then } d(f(x), t(a))<\epsilon
\end{aligned}
$$

$$
\begin{aligned}
& \text { scoptah } d(f(x), f(a))<\epsilon \\
& d(f(x), f(a)) \leq \sqrt[3]{d(x, a)}<\epsilon \\
& d(x, a)<\epsilon^{3} \\
& \text { so } \delta(\epsilon)=\epsilon^{3}
\end{aligned}
$$

The functions $e_{n}(x)$

Instead of $E(z), C(x)$, and $S(x)$, we can now write $e^{z}, \cos x$, and $\sin x$.

Definition
For $n \in \mathbb{Z}$, we define $e_{n}: \mathbb{R} \rightarrow \mathbb{C}$ by

$$
e_{n}(x)=e^{2 \pi i n x}
$$

Note: $\overline{e_{n}(x)}=\overline{e^{2 \pi i n x}}=e^{-2 \pi i n x}=e_{-n}(x)$.
So

$$
e_{n}^{\prime}(x)=(2 \pi i n) e_{n}(x)
$$

Afoden(x) has nerind.
And each of the $e_{-} n$ is periodic with period 1 .

Integration formulas

We have
and so on. More importantly:

$$
\int \overline{e_{n}(x)} d x=-\frac{e_{-n}(x)}{2 \pi i n}+C
$$

$$
\int x \overline{e_{n}(x)} d x=-\frac{x e_{-n}(x)}{2 \pi i n}-\frac{e_{-n}(x)}{(2 \pi i n)^{2}}+C
$$

$$
\int_{0}^{1} e_{n}(x) \overline{e_{k}(x)} d x= \begin{cases}1 & \text { if } n=k \\ 0 & \text { otherwise }\end{cases}
$$

Special values of $e_{n}(x)$

$$
\begin{aligned}
& \left|e_{n}(x)\right|=1 \\
& e_{n}(k)=e^{2 \pi i n k}=e_{-n}(k)=e^{-2 \pi i n k}=1 \\
& \begin{array}{c}
e_{n}(k)=e^{e m i n}=e_{-n}(k)=e^{-2 n i n}=1 \\
e_{n}\left(\frac{1}{2}\right)=e^{\pi i n}=e_{-n}\left(\frac{1}{2}\right)=e^{-\pi i n}=(-1)^{n} \\
e_{n}\left(\frac{1}{4}\right)=e_{-n}\left(-\frac{1}{4}\right)=e^{2 \pi \cdot x} \\
X \text { reVS }
\end{array} \\
& e_{n}\left(-\frac{1}{4}\right)=e_{-n}\left(\frac{1}{4}\right)=e^{-\pi i n / 2}=(-i)^{n}
\end{aligned}
$$

Welcome to the heart of the course

Inch. 5 \& 6-8

Three big themes:

- Measuring how different two functions are
- Looking at spaces of functions instead of individual functions
- Geometry through dot products

How close are two functions?
I have two clocks: one doesn't go at all, and the other loses a minute a day: which would you prefer?
to 0 A V correct
t time in days, $f(t)$ actual correct time, $s(t)=0$ time on the stopped clock, $\ell(t)$ time on the lagging clock.
At time t, magnitudes (absolute value) of the error (in hours) of the stopped and lagging clocks are

$$
\begin{array}{rr}
|f(t)-s(t)|=|24 t| & \text { for }-\frac{1}{2} \leq t \leq \frac{1}{2} \\
|f(t)-\ell(t)|=\left|\frac{t}{60}\right| & \text { for }-720 \leq t \leq 720
\end{array}
$$

So which is bigger, $|f(t)-s(t)|$ or $|f(t)-\ell(t)|$?

A more precise question What do we mean by a "bigger" error?

 How do we measure how close f and g are?Which clock is closer to being correct (smaller error) on average? Recall that the average value of $f(t)$ over all $t \in[a, b]$ is:

$$
\text { error } \frac{1}{b-a} \int_{a}^{b} f(t) d t
$$

So average question becomes, which is larger:

$$
\begin{aligned}
& \frac{1}{\left(\frac{1}{2}\right)-\left(-\frac{1}{2}\right)} \int_{-\frac{1}{2}}^{\frac{1}{2}}|f(t)-s(t)| d t \\
& \frac{1}{720-(-720)} \int_{-720}^{720}|f(t)-\ell(t)| d t ?
\end{aligned}
$$

What happens if you take mean squared error (same, but square integrand)?

Function spaces

Definition

$(x \subseteq \mathbb{C})$

X a set. A function space on X is a collection V of functions, each w/domain X, such that:

1. (Nonempty) V contains the zero function $0(x)=0$.
2. (Closed under addition) For $f, g \in V, f+g \in V$.
3. (Closed under scalar multiplication) For $f \in V$ and $c \in \mathbb{C}$, $c f \in V$.
A subset of V that is itself a function space is called a function subspace, or simply a subspace, of V.

In lin dy, defw thm of subsp.

Examples $R=R$ eichmann
$\emptyset \neq X \subseteq \mathbb{C}$, every poor/ of X is a limit point.

- If $X=[a, b], \mathcal{R}(X)=$ set of all functions integrable on X.
- $C^{0}(X)=$ set of all continuous $f: X \rightarrow \mathbb{C}$.
- $C^{r}(X)=$ set of all $f: X \rightarrow \mathbb{C}$ with continuous r th derivatives.
- $C^{\infty}(X)=$ set of all $f: X \rightarrow \mathbb{C}$ with r th derivatives for every $r>0 . F \operatorname{CalC} I$ space.
We have: $X=[a, b]$

$$
\mathcal{R}(X) \supset C^{0}(X) \supset C^{1}(X) \supset C^{2}(X) \supset \cdots \supset C^{\infty}(X)
$$

$\int b_{c} \leqslant c o n T<d i f f$

$$
f \in C^{\prime} \Rightarrow f^{\prime} \operatorname{con} T .
$$

$$
\text { diff } \Rightarrow \text { cont } \Rightarrow S \text {-ble }
$$

Spaces of periodic functions
Definition
To say that the domain of a function f is S^{1} means:

- The domain of f is \mathbb{R}; and
- For all $x \in \mathbb{R}, f(x+1)=f(x)$, ie., f is periodic with period 1.

Function spaces on S^{1}

Continuity, limits, and derivatives defined as usual. Integral: To say that $f: S^{1} \rightarrow \mathbb{C}$ is integrable means that

$$
\begin{aligned}
& \int_{S^{1}} f(x) d x=\int_{0}^{1} f(x) d x=\int_{-\frac{1}{2}}^{\frac{1}{2}} f(x) d x \\
& \text { ave: } \\
& \supset C^{0}\left(S^{1}\right) \supset C^{1}\left(S^{1}\right) \supset C^{2}\left(S^{1}\right) \supset \cdots \supset C^{\infty}\left(S^{1}\right) .
\end{aligned}
$$

Metrics on function spaces

One important idea we'll use a lot is the idea of putting a metric on a function space, i.e., a function that determines the distance between two functions in the space.

Definition

X a closed and bounded subset of \mathbb{C} and $f, g \in C^{0}(X)$. We define

$$
d(f, g)=\sup \{|f(x)-g(x)| \mid x \in X\} .
$$

I.e., $d(f, g)$ is the worst-case scenario of the difference between $f(x)$ and $g(x)$.
Theorem
For X a closed and bounded subset of $\mathbb{C}, d(f, g)$ defines a metric on $C^{0}(X)$.

Dot products

Dot product $\cdot: \mathbb{R}^{n} \times \mathbb{R}^{n} \rightarrow \mathbb{R}$ is defined to be

$$
\left(x_{1}, \ldots, x_{n}\right) \cdot\left(y_{1}, \ldots, y_{n}\right)=x_{1} y_{1}+\cdots+x_{n} y_{n}
$$

for all $\left(x_{1}, \ldots, x_{n}\right),\left(y_{1}, \ldots, y_{n}\right) \in \mathbb{R}^{n}$.
For $v, w, x \in \mathbb{R}^{n}$ and $c \in \mathbb{R}$, we have

- $v \cdot w=w \cdot v$.
- $(v+w) \cdot x=v \cdot x+w \cdot x$.
- $(c v) \cdot w=c(v \cdot w)$.
- If $x=\left(x_{1}, \ldots, x_{n}\right)$, then $x \cdot x=x_{1}^{2}+\cdots+x_{n}^{2}$.

Orthogonality

Can use dot products to define not just length, but also angles.

- If $v, w \in \mathbb{R}^{n}$, to say that v and w are orthogonal means that $v \cdot w=0$.
- To say that $\left\{v_{1}, \ldots, v_{n}\right\}$ is orthonormal means:

$$
v_{i} \cdot v_{j}= \begin{cases}1 & \text { if } i=j \\ 0 & \text { if } i \neq j\end{cases}
$$

An orthonormal set of size n gives "unit coordinate axes" for \mathbb{R}^{n}. Coordinates with respect to those unit coordinate axes can be conveniently computed: If $\left\{v_{1}, \ldots, v_{n}\right\}$ is an orthonormal set in \mathbb{R}^{n} and

$$
\begin{equation*}
w=a_{1} v_{1}+\cdots+a_{n} v_{n} \tag{1}
\end{equation*}
$$

for some $w \in \mathbb{R}^{n}$, then $a_{i}=w \cdot v_{i}$.

Summary

To study functions on S^{1} (functions on \mathbb{R} that are periodic with period 1):

- We look at a function space V like $C^{0}\left(S^{1}\right), C^{1}\left(S^{1}\right), C^{\infty}\left(S^{1}\right)$.
- Define a metric $d(f, g)$ on V based on something like mean squared error between f and g.
- The distance $d(f, g)$ will then be closely related to a generalized dot product! So we can do geometry and orthogonality in V.

