
Math 131B, Mon Sep 28

I Use a laptop or desktop with a large screen so you can read
these words clearly.

I In general, please turn off your camera and mute yourself.

I Exception: When we do groupwork, please turn both your
camera and mic on. (Groupwork will not be recorded.)

I Please always have the chat window open to ask questions.

I Reading for today: 4.5–4.6. Reading for Wed: 5.1–5.3.

I PS04 due tonight. PS05 outline due Wed night.

I Problem session Fri Sep 25, 10:00–noon on Zoom.



How to prove that fn → f uniformly

Our main technique:

Theorem (Weierstrass M-test)

gn : X → C be sequence of functions, and Mn a sequence of

nonnegative real numbers such that
∑

Mn converges and

|gn(z)| ≤ Mn

for all z ∈ X . Then
∞∑
n=0

gn(z) converges absolutely and uniformly

to some f : X → C.

Mn for majorant, something bigger than gn(z) for all z . Basically
the comparison test for series of functions.



Example
Let

f (x) =
∞∑
n=0

xn sin(nx).

Prove that the series converges uniformly on
[
0, 12
]
.





Power series

Definition
A power series is a (complex-valued) series of the form

f (z) =
∞∑
n=0

anz
n, where the an ∈ C are the coefficients of the

power series, and we interpret z0 as the constant function 1.



The radius of convergence

Theorem

Let f (z) =
∞∑
n=0

anz
n be a power series such that ρ = lim

n→∞

∣∣∣∣an+1

an

∣∣∣∣
exists, and let R =

1

ρ
, where we define R =∞ when ρ = 0. Then:

1. For any R0 such that 0 ≤ R0 < R, the power series f (z)
converges uniformly on the closed disc NR0(0).

2. It follows that f (z) converges pointwise (but not necessarily
uniformly) on the open disc NR(0).

3. Let bn = nan. Then lim
n→∞

∣∣∣∣bn+1

bn

∣∣∣∣ = ρ as well.

4. It follows that f (z) is differentiable on NR(0), and that

f ′(z) =
∞∑
n=1

nanz
n−1 =

∞∑
k=0

(k + 1)ak+1z
k

for any z ∈ NR(0).





Exponential functions

Now you can go figure out calculus yourself!

Definition
For z ∈ C, we define

E (z) =
∞∑
n=0

zn

n!
=
∞∑
n=0

(
1

n!

)
zn.

Theorem
The power series E (z) has radius of convergence R =∞.
Furthermore, E (0) = 1, E (z) = E (z), and for all z ∈ C,
E ′(z) = E (z).

Theorem
For any z ∈ C, E (z) 6= 0.

Theorem
For z ,w ∈ C, we have that E (z + w) = E (z)E (w).



Theorem
For any z ∈ C, E (z) 6= 0.

Proof: Let f (z) = E (z)E (−z).



Trig functions

Definition
Define C : R→ R and S : R→ R by

E (ix) = C (x) + iS(x)

for all x ∈ R.

Theorem

1. C (0) = 1 and S(0) = 0.

2. C (−x) = C (x) and S(−x) = −S(x).

3. |E (ix)| = 1 and C (x)2 + S(x)2 = 1.

4. C ′(x) = −S(x) and S ′(x) = C (x).



Periodicity of trig functions

Definition
We define π = 2 inf V , or in other words, we define π/2 to be the
infimum of all positive zeros of C (x).

Theorem
We have that:

1. C (π/2) = 0.

2. S(π/2) = 1, and therefore, E (πi/2) = i .

3. E (2πi) = 1.

4. For any x ∈ R, E (i(x + 2π)) = E (ix).

Picture:





The functions en(x)

Instead of E (z), C (x), and S(x), we can now write ez , cos x , and
sin x .

Definition
For n ∈ Z, we define en : R→ C by

en(x) = e2πinx .

Note: en(x) = e2πinx = e−2πinx = e−n(x).

So
e ′n(x) =

And en(x) has period:





Integration formulas

We have ∫
en(x) dx = −e−n(x)

2πin
+ C∫

x en(x) dx = −xe−n(x)

2πin
− e−n(x)

(2πin)2
+ C

and so on. More importantly:∫ 1

0
en(x) ek(x) dx =

{
1 if n = k ,

0 otherwise.



Special values of en(x)

|en(x)| = 1

en(k) = e2πink = e−n(k) = e−2πink = 1

en

(
1

2

)
= eπin = e−n

(
1

2

)
= e−πin = (−1)n

en

(
1

4

)
= e−n

(
−1

4

)
= eπin/2 = in

en

(
−1

4

)
= e−n

(
1

4

)
= e−πin/2 = (−i)n


