Math 131B, Mon Sep 28

And we've run out of 1st round of music, so I'll be asking for more music requests....

- Use a laptop or desktop with a large screen so you can read these words clearly.
- In general, please turn off your camera and mute yourself.
- Exception: When we do groupwork, please turn both your camera and mic on. (Groupwork will not be recorded.)
- Please always have the chat window open to ask questions.
- Reading for today: 4.5–4.6. Reading for Wed: 5.1–5.3.
- PS04 due tonight. PS05 outline due Wed night.
- Problem session Fri Sep 25, 10:00–noon on Zoom.

0000

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

How to prove that $\mathbf{X} \to f$ uniformly

Our main technique: *

Theorem (Weierstrass *M*-test)

 $g_n: X \to \mathbb{C}$ be sequence of functions, and M_n a sequence of nonnegative real numbers such that $\sum M_n$ converges and $|g_n(z)| \le M_n$ M_n dominates $g_n(z)$

for all $z \in X$. Then $\sum_{n=0}^{\infty} g_n(z)$ converges absolutely and uniformly to some $f: X \to \mathbb{C}$.

 M_n for **majorant**, something bigger than $g_n(z)$ for all z. Basically the comparison test for series of functions.

Example
Let

$$f(x) = \sum_{n=0}^{\infty} x^n \sin(nx).$$
Prove that the series converges uniformly on $[0, \frac{1}{2}].$

$$f(x) = \int_{n=0}^{\infty} (nx) \left[-f(x) \right] \left[-$$

But Smn= S(1)" convs, b/c geom series w/H<1. So by M-test, X sin(ha) convs abs & whit.

You'll do this on 4.4.1 in PS04 and many other times this semester.....

Power series

The fundamentals from Analysis I (upgraded to Analysis II)

- * Limits of sequences
- * Continuity, differentiability, integration, FTC
- * Infinite series, series of functions, uniform convergence

4.4, 4.5, 4.6 are all about recovering calc I and calc II, extended to complex numbers in places. Goal is for you to be able to do the rest yourself!

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Definition

A **power series** is a (complex-valued) series of the form ∞

$$f(z) = \sum_{n=0}^{\infty} a_n z^n$$
, where the $a_n \in \mathbb{C}$ are the **coefficients** of the

power series, and we interpret z^0 as the constant function 1.

The radius of convergence

Theorem Let $f(z) = \sum_{n=0}^{\infty} a_n z^n$ be a power series such that $\rho = \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right|$ exists, and let $R = \frac{1}{\rho}$, where we define $R = \infty$ when $\rho = 0$. Then:

- 1. For any R_0 such that $0 \le R_0 < R$, the power series f(z) converges uniformly on the closed disc $\overline{\mathcal{N}_{R_0}(0)}$.
- 2. It follows that f(z) converges pointwise (but not necessarily uniformly) on the open disc $\mathcal{N}_R(0)$.

3. Let
$$b_n = na_n$$
. Then $\lim_{n \to \infty} \left| \frac{b_{n+1}}{b_n} \right| = \rho$ as well.

4. It follows that f(z) is differentiable on $\mathcal{N}_R(0)$, and that

$$f'(z) = \sum_{n=1}^{\infty} na_n z^{n-1} = \sum_{k=0}^{\infty} (k+1)a_{k+1} z^k \quad \text{differentiation}$$

Exponential functions

Now you can go figure out calculus yourself!

Definition

For $z \in \mathbb{C}$, we define

Once we establish the familiar properties of exponential fn, we'll use notation e^xz instead of E(z).

$$E(z) = \sum_{n=0}^{\infty} \frac{z^n}{n!} = \sum_{n=0}^{\infty} \left(\frac{1}{n!}\right) z^n$$

Theorem Design: Use power series here, and then only use E'(z)=E(z), E(0)=1.

The power series E(z) has radius of convergence $R = \infty$. Furthermore, E(0) = 1, $\overline{E(z)} = E(\overline{z})$, and for all $z \in \mathbb{C}$, E'(z) = E(z).

Theorem $E^2 \neq 0$ For any $z \in \mathbb{C}$, $E(z) \neq 0$.

Theorem

For $z, w \in \mathbb{C}$, we have that E(z + w) = E(z)E(w).

Theorem
For any
$$z \in \mathbb{C}$$
, $E(z) \neq 0$.
Proof: Let $f(z) = E(z)E(-z)$.

$$f'(z) = f_{z}^{*}(E(z)) E(z) + E(z) f_{z}(E(z))$$

= E'(z) E(-z) + E'(z) E'(-z) + (-1)
$$f_{z} = E(z) E(-z) - E(z) E(-z) = 0$$

$$f_{z} = E(z) E(-z) = (+ n s t)$$

f(z) - E'(z) E(-z) = (- so E(z) E(-z) = 1)

7

Trig functions

Periodicity of trig functions

Definition

We define $\pi = 2 \inf V$, or in other words, we define $\pi/2$ to be the infimum of all positive zeros of C(x).

Theorem

We have that:

1.
$$C(\pi/2) = 0$$
.
2. $S(\pi/2) = 1$, and therefore, $E(\pi i/2) = i$.
3. $E(2\pi i) = 1$.
4. For any $x \in \mathbb{R}$, $E(i(x + 2\pi)) = E(ix)$.

(10)

(日) (四) (日) (日) (日)

Picture:

The functions $e_n(x)$

Instead of E(z), C(x), and S(x), we can now write e^z , $\cos x$, and $\sin x$.

Definition

For $n \in \mathbb{Z}$, we define $e_n : \mathbb{R} \to \mathbb{C}$ by

$$e_n(x) = e^{2\pi i n x}$$

$$\frac{d}{dx}(e^{2x})=2e^{2x}$$

Note:
$$\overline{e_n(x)} = \overline{e^{2\pi i n x}} = e^{-2\pi i n x} = e_{-n}(x).$$

So

$$e'_n(x) = (2\pi i h) e_n(x)$$

And $e_n(x)$ has period:
$$e''_n(x) = -4\pi i h c_n(x)$$

e'x has period 27 e (x)= e^{2 Tix} has period $e_n(x) = e^{2n!nx}$ has pd $\frac{1}{1n}$ $(n \neq \partial)$

e^{ix} has period 2pi, i.e., to go around unit circle once, x goes from 0 to 2pi.

The function $e^{i(2 pi x)}$ goes around unit circle once as 2 pi x goes from 0 to 2 pi, i.e., once as x goes from 0 to 1.

Integration formulas

We have

$$\int \overline{e_n(x)} \, dx = -\frac{e_{-n}(x)}{2\pi i n} + C$$
$$\int x \, \overline{e_n(x)} \, dx = -\frac{xe_{-n}(x)}{2\pi i n} - \frac{e_{-n}(x)}{(2\pi i n)^2} + C$$

and so on. More importantly:

$$\int_0^1 e_n(x) \overline{e_k(x)} \, dx = \begin{cases} 1 & \text{if } n = k, \\ 0 & \text{otherwise.} \end{cases}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Special values of $e_n(x)$

