Math 131B, Mon Sep 28

And we've run out of 1st round of music, so l'll be asking for more music requests....

- Use a laptop or desktop with a large screen so you can read these words clearly.
- In general, please turn off your camera and mute yourself.
- Exception: When we do groupwork, please turn both your camera and mic on. (Groupwork will not be recorded.)
- Please always have the chat window open to ask questions.
- Reading for today: 4.5-4.6. Reading for Wed: 5.1-5.3.
- PS04 due tonight. PS05 outline due Wed night.
- Problem session Fri Sop-25, 10:00-noon on Zoom.

How to prove that $\mathcal{X}_{1} \rightarrow f$ uniformly

Our main technique:
Theorem (Weierstrass M-test)
$g_{n}: X \rightarrow \mathbb{C}$ be sequence of functions, and M_{n} a sequence of nonnegative real numbers such that $\sum M_{n}$ converges and

$$
\left|g_{n}(z)\right| \leq M_{n}
$$

for all $z \in X$. Then $\sum_{n=0}^{\infty} g_{n}(z)$ converges absolutely and uniformly to some $f: X \rightarrow \mathbb{C}$.
M_{n} for majorant, something bigger than $g_{n}(z)$ for all z. Basically the comparison test for series of functions.

Example

$$
f(x)=\sum_{n=0}^{\infty} x_{h} \frac{g_{h}(x)}{\sin (n x) .}
$$

Prove that the series converges uniformly on $\left[0, \frac{1}{2}\right]$.

$$
\begin{aligned}
& \text { Pf Use Mutest. Let } M_{r}=\left(\frac{1}{2}\right)^{n} \\
& \left|x^{n} \sin (n x)\right|=\left|x^{n}\right||\sin (n x)| \\
& \begin{array}{l}
\text { What is the worst-case } \\
\text { scenario for how big this }
\end{array} \\
& \begin{array}{l}
\text { scenario for how big this } \\
\text { gets? }
\end{array} \\
& \leq\left|x^{n}\right|^{2} \operatorname{sinex} \text { ansin:0.2a } \\
& \leq\left(\frac{1}{2}\right)^{n}=M_{n}
\end{aligned}
$$

But $\sum_{n=0}^{\infty} m_{n}=\sum_{n=0}^{\infty}\left(\frac{1}{2}\right)^{n}$ cones, b/c germ series $w /$ 似 <1. So by M-test, $\sum_{n=0}^{\infty} x^{n} \sin (n x)$ convs abs d unit.

Power series

The fundamentals from Analysis I (upgraded to Analysis II)

* Limits of sequences
* Continuity, differentiability, integration, FTC
* Infinite series, series of functions, uniform convergence
4.4, 4.5, 4.6 are all about recovering calc I and calc II, extended to complex numbers in places.
Goal is for you to be able to do the rest yourself!
Definition
A power series is a (complex-valued) series of the form $f(z)=\sum_{n=0}^{\infty} a_{n} z^{n}$, where the $a_{n} \in \mathbb{C}$ are the coefficients of the
power series, and we interpret z^{0} as the constant function 1.

The radius of convergence

Theorem
Let $f(z)=\sum_{n=0}^{\infty} a_{n} z^{n}$ be a power series such that $\rho=\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|$
exists, and let $R=\frac{1}{\rho}$, where we define $R=\infty$ when $\rho=0$. Then:

1. For any R_{0} such that $0 \leq R_{0}<R$, the power series $f(z)$ converges uniformly on the closed disc $\overline{\mathcal{N}_{R_{0}}(0)}$.
2. It follows that $f(z)$ converges pointwise (but not necessarily uniformly) on the open disc $\mathcal{N}_{R}(0)$.
3. Let $b_{n}=n a_{n}$. Then $\lim _{n \rightarrow \infty}\left|\frac{b_{n+1}}{b_{n}}\right|=\rho$ as well.
4. It follows that $f(z)$ is differentiable on $\mathcal{N}_{R}(0)$, and that

$$
f^{\prime}(z)=\sum_{n=1}^{\infty} n a_{n} z^{n-1}=\sum_{k=0}^{\infty}(k+1) a_{k+1} z^{k} \begin{aligned}
& \text { term by term } \\
& \text { differentiation }
\end{aligned}
$$

Exponential functions

Now you can go figure out calculus yourself!
Definition
For $z \in \mathbb{C}$, we define

Once we establish the familiar properties of exponential fn, we'll use notation $e^{\wedge} z$ instead of $E(z)$.

$$
E(z)=\sum_{n=0}^{\infty} \frac{z^{n}}{n!}=\sum_{n=0}^{\infty}\left(\frac{1}{n!}\right) z^{n}
$$

Theorem Design: Use power series here, and then only use $\mathrm{E}^{\prime}(z)=\mathrm{E}(\mathrm{z}), \mathrm{E}(0)=1$.
The power series $E(z)$ has radius of convergence $R=\infty$.
Furthermore, $E(0)=1, \overline{E(z)}=E(\bar{z})$, and for all $z \in \mathbb{C}$,
$E^{\prime}(z)=E(z) \quad e^{z} \neq 0 \quad \frac{1}{d z}\left(\rho^{z}\right)=e^{2}$
Theorem
For any $z \in \mathbb{C}, E(z) \neq 0$.
Theorem
For $z, w \in \mathbb{C}$, we have that $E(z+w)=E(z) E(w)$.

$$
\sqrt{E^{\prime}}=E \quad E(0)=1
$$

Theorem
Enif to show that $E(z) E(-z)=1$.
For any $z \in \mathbb{C}, E(z) \neq 0$.
Proof: Let $f(z)=E(z) E(-z)$.

$$
\begin{align*}
& f^{\prime}(z)=\frac{d}{d z}(E(z)) E(z)+E(z) \frac{d}{1 z}(E(-z)) \\
&=\left.E^{\prime}(z) E(-z)+E(z) E(-z) \cdot(-1)\right] \\
&=E(z) E(-z)-E(z) E(-z)=0 \\
& s_{0}(z)=E(z) E(-z)=(1 n s t . \\
& f(0)=E(0) E(0)=1 . \text { so } E(z) E(-z)=1
\end{align*}
$$

Trig functions

Definition
Define $C: \mathbb{R} \rightarrow \mathbb{R}$ and $S: \mathbb{R} \rightarrow \mathbb{R}$ by
for all $x \in \mathbb{R}$.
Theorem

$$
E(i x)=C(x)+i S(x)
$$

$$
\text { 1. } \overparen{C(0)=1 \text { and } S(0)=0 .}
$$

2. $C(-x)=C(x)$ and $S(-x)=-S(x)$.
3. $|E(i x)|=1$ and $C(x)^{2}+S(x)^{2}=1$.
4. $C^{\prime}(x)=-S(x)$ and $S^{\prime}(x)=C(x)$.

Periodicity of trig functions

Definition

We define $\pi=2 \inf V$, or in other words, we define $\pi / 2$ to be the infimum of all positive zeros of $C(x)$.

Theorem
We have that:

$$
\text { 1. } C(\pi / 2)=0 \text {. }
$$

2. $S(\pi / 2)=1$, and therefore, $E(\pi i / 2)=i$.
$3 \quad E(2 \pi i)=1$. $\quad e^{2 \pi i}=1$
3. Ff वार $x \in \mathbb{R}, E(i(x+2 \pi))=E(i x$.
$e^{i x} h_{\text {as }} \mathrm{pd} 2 \pi$.

The functions $e_{n}(x)$

Instead of $E(z), C(x)$, and $S(x)$, we can now write $e^{z}, \cos x$, and $\sin x$.

Definition
For $n \in \mathbb{Z}$, we define $e_{n}: \mathbb{R} \rightarrow \mathbb{C}$ by

$$
\frac{d}{d x}\left(e^{2 x}\right)=2 e^{2 x}
$$

$$
e_{n}(x)=e^{2 \pi i n x}
$$

Note: $\overline{e_{n}(x)}=\overline{e^{2 \pi i n x}}=e^{-2 \pi i n x}=e_{-n}(x)$.
So

$$
e_{n}^{\prime}(x)=(2 \pi i n) e_{n}(x)
$$

And $e_{n}(x)$ has period:

$$
e_{n}^{\prime \prime}(x)=-4 \pi^{2} n^{2} c_{V}(x)
$$

$$
\begin{gathered}
e^{i x} \text { has period } 2 \pi \\
c_{1}(x)=e^{2 \pi i x} \text { has period } \\
e_{n}(x)=e^{2 n i n x} \text { has pod } \frac{1}{(n)} \\
(n \not n)
\end{gathered}
$$

$e^{\wedge}\{i \mathrm{ix}\}$ has period 2 pi, ie., to go around unit circle once, x goes from 0 to 2 pi. The function $e^{\wedge}\{i(2$ pi x$)\}$ goes around
2 pi, ie., once as x goes from 0 to 1 .

Integration formulas

We have

$$
\begin{aligned}
\int \overline{e_{n}(x)} d x & =-\frac{e_{-n}(x)}{2 \pi i n}+C \\
\int x \overline{e_{n}(x)} d x & =-\frac{x e_{-n}(x)}{2 \pi i n}-\frac{e_{-n}(x)}{(2 \pi i n)^{2}}+C
\end{aligned}
$$

and so on. More importantly:

$$
\int_{0}^{1} e_{n}(x) \overline{e_{k}(x)} d x= \begin{cases}1 & \text { if } n=k \\ 0 & \text { otherwise }\end{cases}
$$

Special values of $e_{n}(x)$

$$
\begin{gathered}
\left|e_{n}(x)\right|=1 \\
e_{n}(k)=e^{2 \pi i n k}=e_{-n}(k)=e^{-2 \pi i n k}=1 \\
e_{n}\left(\frac{1}{2}\right)=e^{\pi i n}=e_{-n}\left(\frac{1}{2}\right)=e^{-\pi i n}=(-1)^{n} \\
e_{n}\left(\frac{1}{4}\right)=e_{-n}\left(-\frac{1}{4}\right)=e^{\pi i n / 2}=i^{n} \\
e_{n}\left(-\frac{1}{4}\right)=e_{-n}\left(\frac{1}{4}\right)=e^{-\pi i n / 2}=(-i)^{n}
\end{gathered}
$$

