Math 131B, Wed Sep 23

- Use a laptop or desktop with a large screen so you can read these words clearly.
- In general, please turn off your camera and mute yourself.
- Exception: When we do groupwork, please turn both your camera and mic on. (Groupwork will not be recorded.)
- Please always have the chat window open to ask questions.
- Reading for today: 4.3–4.4. Reading for Mon: 4.5–4.6.
- Outline for PS04 due tonight; completed version due Mon Sep 28.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Problem session Fri Sep 25, 10:00–noon on Zoom.

The six NO's Vz EX, f, 12) -> flz)

Suppose f_n converges pointwise to f on a domain X.

- QB If the f_n are all bounded on X, must f be bounded on X?
- QC If the f_n are all continuous on X, must f be continuous on X?
- QD1 If the f_n are all differentiable on X, must f be differentiable on X?
- QD2 If the f_n and f are all differentiable on X, must it be the case that f'_n converges pointwise to f' on X?
 - Ql1 If the f_n are all integrable on X, must f be integrable on X?
 - Q12 If the f_n and f are all integrable on [a, b], must it be the case that $\lim_{n\to\infty} \int_a^b f_n(x) dx = \int_a^b f(x) dx$?

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Back to Maple

To the Maple worksheet....

How can we fix these pointwise problems?

Defn: $f_n : X \to \mathbb{C}, f : X \to \mathbb{C}$ functions. To say that f_n converges **uniformly** to f on X means: YETU JN(E) (1) Vtz EX Z+ N > N(e)then |fn(z)-flz) <E As usual, uniform convergence of a series $\sum g_n(z)$ is defined in terms of the uniform convergence of its sequence of partial sums $f_N(z)=\sum g_n(z).$

Pointwise vs. uniform convergence Think of N as rate of convergence as n -> infinity.

 $f_n(z) \rightarrow f(z)$ pointwise on X:

Hzex Heyo

For pointwise convergence, rate of convergence can be different at different points in domain. $\frac{JN(E, Z)}{L+n > N(E, Z)}$ then $|f_1(z) - f_1(z)| < E$

 $f_n(z) \rightarrow f(z)$ uniformly on X: $\downarrow \in 70$ here, N cannot depend on z!!! $\neg \downarrow (\in) 51$. $\forall z \in X$ For uniform convergence, rate of convergence is same at different points in domain. (Or actually, there is a worst case that works everywhere.) $f(z) \rightarrow f(z) = f(z) = f(z)$

First Uniform YES: QB

Theorem

 $f_n : X \to \mathbb{C}$ a sequence of functions, each bounded on X, such that f_n converges uniformly on X to some $f : X \to \mathbb{C}$. Then f is bounded on X.

Proof: Picture:

For some fixed n, f is within 1 of f_n everywhere in the domain.

 $\frac{1}{14}$ By refr of unif con $v, \in = 1$, (A) = (I) = Fix some n > N(1). fnis bd, so JM st. Vzer $\left(f_{a}(z) \right) < M$ AZEX ◆ロト ◆母 ト ◆臣 ト ◆臣 ト ● ● の Q ()・

 $|f(z)| \le |f(z-f_1(z)|+|f_n(z)|$ < $\int by(n) < 1 + M$

C |f(z)| < M + 1 $C \forall z \in X, |f(z)| < M + 1$ So f bd. (; $\left(\begin{array}{c} \cdot \\ \cdot \end{array} \right)$

Uniform YES: QC

P504

Theorem Note: To bound the distance travelled along a path by a sum of distances of other paths, use triangle inequality. $f_n : X \to \mathbb{C}$ a sequence of functions, each continuous on X, such that f_n converges uniformly on X to some $f : X \to \mathbb{C}$. Then f is continuous on X.

Uniform YES: QI1

Text

Theorem

Let $f_n : [a, b] \to \mathbb{C}$ be a sequence of functions, each integrable on [a, b], such that f_n converges uniformly on [a, b] to some $f:[a,b] \rightarrow \mathbb{C}$. Then f is integrable on [a,b]. **Picture:** (real case) To prove f integrable, need to bound "weighted maximum wiggle" on each subinterval. (-12) - (12)I∆x; m

Uniform YES: QI2

Theorem

Let $f_n : [a, b] \to \mathbb{C}$ be a sequence of functions, each integrable on [a, b], such that f_n converges uniformly on [a, b] to some $f : [a, b] \to \mathbb{C}$. Then

W504

$$\int_{a}^{b} f(x) dx = \int_{a}^{b} \left(\lim_{n \to \infty} f_{n}(x) \right) dx = \lim_{n \to \infty} \int_{a}^{b} f_{n}(x) dx.$$
For any epsilon, we need to find an n s.t. the integral of f_n is within epsilon of for all x in [a,b].
For any epsilon of integral of f.

So St, differstron St at most $\in (b-q)$.]<e Purple area in the middle is at most epsilon*(b-a)

Still no: QD1, QD2

Back to Maple....

Uniform f'_n : QD1 and QD2 yes

TheoremSupposedon't need f_n to converge unif $f_n: X \to \mathbb{C}$ seq of differentiable functions that converges
pointwise to $f: X \to \mathbb{C}$. $Each f'_n continuous and f'_n converges uniformly to some
<math>g: X \to \mathbb{C}$.DO need their derivatives to conv unifThen f is differentiable on X and f'(z) = g(z), i.e.,

$$\frac{d}{dz}\left(\lim_{n\to\infty}f_n(z)\right)=\lim_{n\to\infty}\left(\frac{d}{dz}f_n(z)\right).$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Proof in textbook.

How to prove that $f_n \rightarrow f$ uniformly

Our main technique:

Theorem (Weierstrass *M*-test)

 $g_n : X \to \mathbb{C}$ be sequence of functions, and M_n a sequence of nonnegative real numbers such that $\sum M_n$ converges and

 $|g_n(z)| \leq M_n$

for all $z \in X$. Then $\sum_{n=0}^{\infty} g_n(z)$ converges absolutely and uniformly to some $f : X \to \mathbb{C}$.

 M_n for **majorant**, something bigger than $g_n(z)$ for all z. Basically the comparison test for series of functions.

Case: Power series

Definition

A power series is a (complex-valued) series of the form

 $f(z) = \sum_{n=0} a_n z^n$, where the $a_n \in \mathbb{C}$ are the **coefficients** of the power series, and we interpret z^0 as the constant function 1.

The radius of convergence

Theorem Let $f(z) = \sum_{n=0}^{\infty} a_n z^n$ be a power series such that $\rho = \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right|$ exists, and let $R = \frac{1}{\rho}$, where we define $R = \infty$ when $\rho = 0$. Then:

- 1. For any R_0 such that $0 \le R_0 < R$, the power series f(z) converges uniformly on the closed disc $\overline{\mathcal{N}_{R_0}(0)}$.
- 2. It follows that f(z) converges pointwise (but not necessarily uniformly) on the open disc $\mathcal{N}_R(0)$.

3. Let
$$b_n = na_n$$
. Then $\lim_{n \to \infty} \left| \frac{b_{n+1}}{b_n} \right| = \rho$ as well.

4. It follows that f(z) is differentiable on $\mathcal{N}_{R}(0)$, and that

$$f'(z) = \sum_{n=1}^{\infty} n a_n z^{n-1} = \sum_{k=0}^{\infty} (k+1) a_{k+1} z^k$$