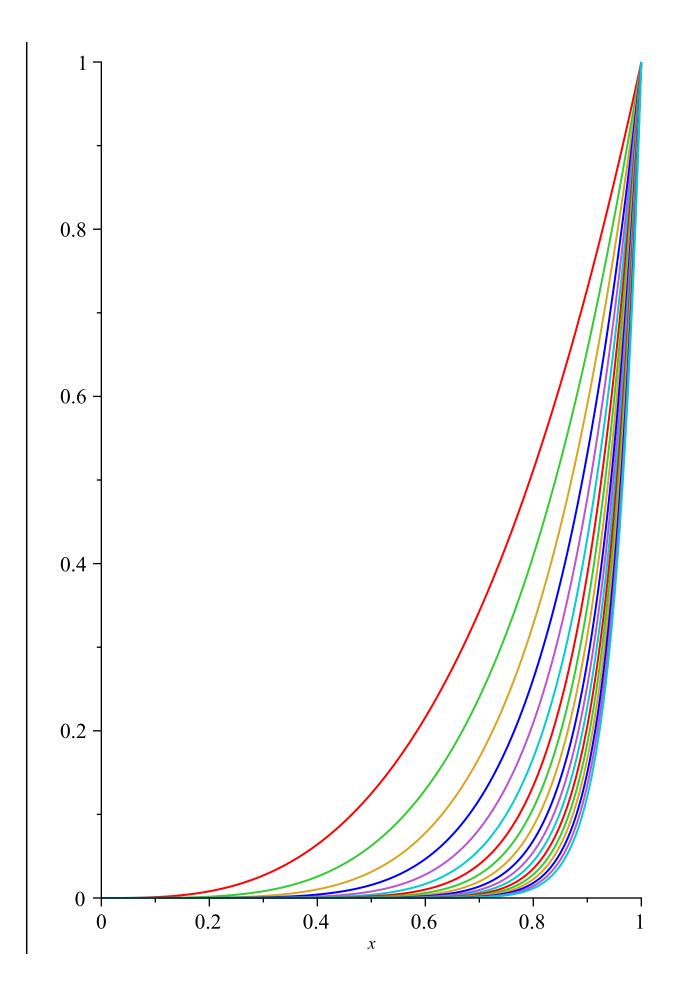

Counterexamples in pointwise convergence: The six NO's


 $QB: If \lim_{n \to \infty} f_n = f_n f_n all bounded, must f be bounded?$ $NO: f(x)=1/1-x for -1 < x < 1, f_n = 1 + x + ... + x^n:$ > geomsums[0] := 1; $geomsums_0 := 1 (1)$ $> for n from 1 to 5 do geomsums[n] := geomsums[n-1] + x^n end do;$ $geomsums_1 := 1 + x$ $geomsums_2 := x^2 + x + 1$ $geomsums_3 := x^3 + x^2 + x + 1$ $geomsums_4 := x^4 + x^3 + x^2 + x + 1$ $geomsums_5 := x^5 + x^4 + x^3 + x^2 + x + 1 (2)$ $> plot(<math>\left[\frac{1}{(1-x)}, seq(geomsums[n], n=1..5)\right], x = -1..1);$

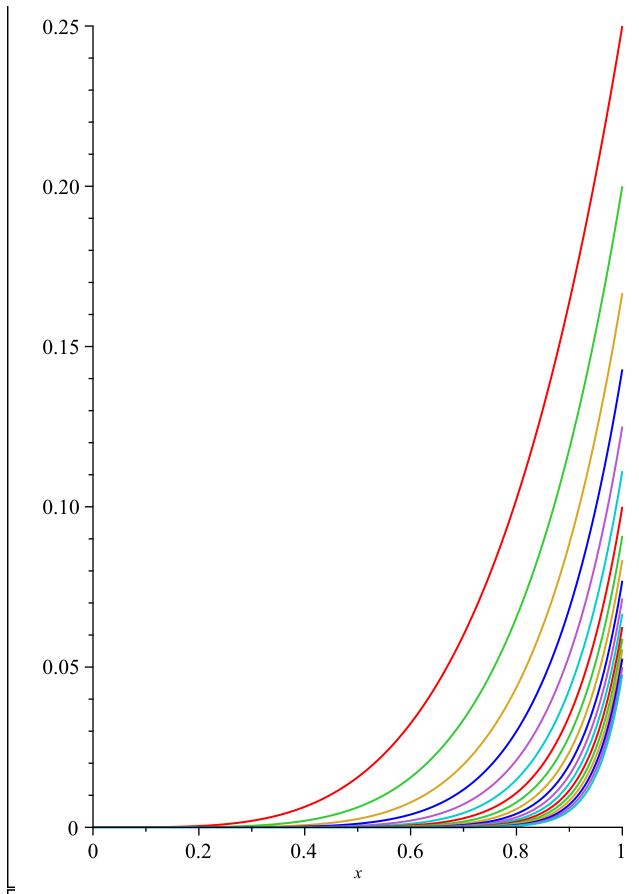
All domains = [0,1] from here onwards.

QC: If $\lim_{x \to \infty} f_n = f$, f_n all continuous, must it be the case that f is continuous? QD1: If $\lim_{x \to \infty} f_n = f$, f_n all differentiable, must it be the case that f is differentiable? NO: f(x) = 0 if $0 \le x \le 1$, f(1)=1, and $f_n = x^n$:

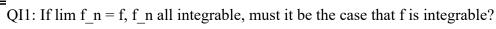
```
> plot([seq(x^n,n=3..20)],x=0..1);
```


Note: f_n converges to f, but not uniformly.

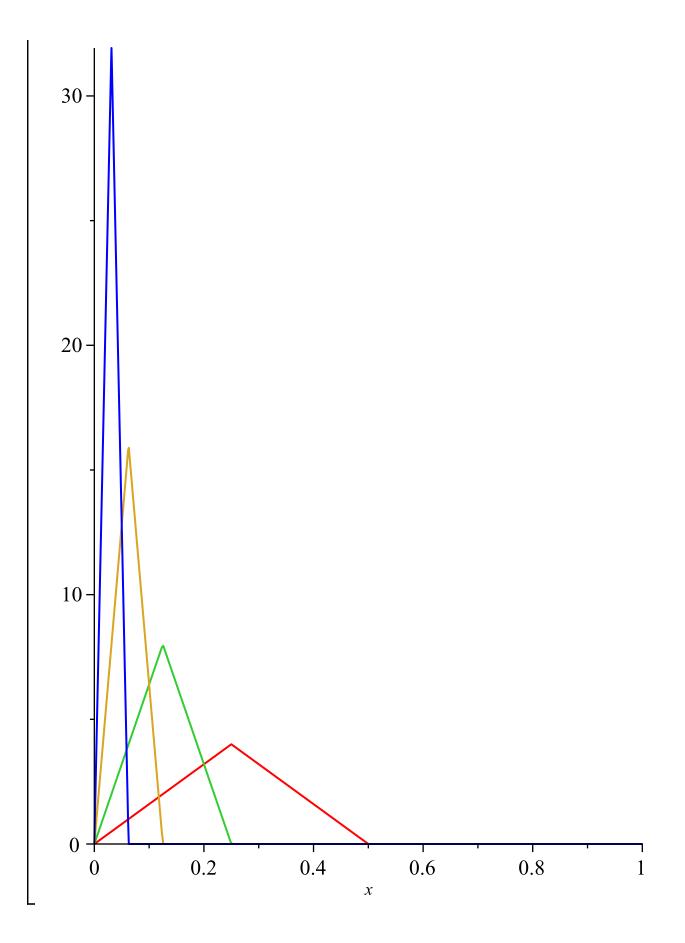
QD2: If $\lim_{x \to \infty} f_n = f$, f_n and f all differentiable, must it be the case that $\lim_{x \to \infty} f'_n = f'$? NO: Take g(x)=0 and:


>
$$g_n := x^{(n+1)} / (n+1);$$

 $g_n := \frac{x^{n+1}}{n+1}$ (3)


> simplify(diff(g_n,x),assume=positive);

(4)


When x=1, $\lim(x^n)=1$. But $\lim(g_n(x))=0$ for all x in [0,1], and in fact, convergence of g_n is __uniform on [0,1]. (Slowest convergence is at x=1, but even there, g_n converges like 1/(n+1).) > plot([seq(x^(n+1)/(n+1), n=3..20)], x=0..1);

 x^n

NO: Example is k(x) = 1 if x is rational, 0 if x irrational; k = n(x) = 1 if x=p/q (least terms) and $q \le n, 0$ otherwise. $\lim k = k$, but "finitely many points at a time", so each g n is continuous except at finitely many points, and therefore integrable. QI2: If $\lim_{n \to \infty} f(n) = f(n)$ and f all integrable, must it be the case that $\lim_{n \to \infty} of$: > int(f n(x), x=0..1); $\int_{0}^{1} f_n(x) \, \mathrm{d}x$ (5) _is equal to: > int(f(x),x=0..1); $\int_{-\infty}^{1} f(x) \, \mathrm{d}x$ (6) NO, not even if all functions continuous: h(x)=0 and h n given by: > h_n = piecewise(x<1/2^(n+1),2^(2*n+2)*x, $x < 1/2^n$, 2^ (2*n+2) * ((1/2^n) - x), 0); $h_n = \begin{cases} 2^{2n+2}x & x < \frac{1}{2^{n+1}} \\ 2^{2n+2}\left(\frac{1}{2^n} - x\right) & x < \frac{1}{2^n} \end{cases}$ (7) 0 otherwise > plot([seq(piecewise(x<1/2^(n+1),2^(2*n+2)*x, $x < 1/2^n, 2^(2*n+2) * ((1/2^n) - x), 0), n=1..4)], x=0..1);$ (Each integral of h = 1 because each triangle is half as wide and twice as high as the previous one.)

