Math 131B, Mon Sep 14

- Use a laptop or desktop with a large screen so you can read these words clearly.
- In general, please turn off your camera and mute yourself.
- Exception: When we do groupwork, please turn both your camera and mic on. (Groupwork will not be recorded.)
- Please always have the chat window open to ask questions.
- Reading for today: 3.5. Reading for Wed: 4.1–4.2.
- Outline for PS04 (not written yet) due Wed Sep 23.
- Next problem session Fri Sep 18, 10:00–noon on Zoom: Exam review
- Zoom proctoring rehearsal TODAY.
- Exam 1 moved to Mon Sep 21, to cover 2.1–2.5, 3.1–3.4, i.e., PS01–03.

Exam rehearsal at 11:35am

2 pieces paper

- 1. Please have a clear workspace ready where you can write.
- 2. Please have some kind of camera ready. First position the camera so I can see your face, and later so I can see your workspace.

3. Please have the Gradescope assignment page "Exam rehearsal" open and ready to go.

Questions?

Exam format

Types of questions:

- Computations
- Proofs
- True/false with justification

For last type, if true, write "True" for full credit; if false, e.g.:

(True/False) For $a, b \in \mathbb{R}$, if $a \ge b$, then $-a \ge -b$.

Need to write "False" and give justification.

False Take a=7, 5=5. Then 735 bit -775-5. False If a> bithen -a <-b by order axioms.

Last time

- Algebraic properties of definite integrals.
- Classes of functions that are integrable: Continuous functions, piecewise continuous functions, monotone functions.
- Triangle inequality for integrals:

$$\left|\int_{a}^{b} f(x) \, dx\right| \leq \int_{a}^{b} |f(x)| \, dx.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Questions?

Theorem (FTC I)

Let I be an interval, $a \in I$, let $f : I \to \mathbb{C}$ be integrable on any closed subinterval of I, and let

$$F(x) = \int_{a}^{x} f(t) dt.$$
 (you know, the +C thing)

Then F is (uniformly) continuous on I, and furthermore, if f is continuous at some $b \in I$, then F is differentiable at b and F'(b) = f(b). I.e., if f cont, then derivative of indef integral of f gives back f. Theorem (FTC II)

Let $F : [a, b] \to \mathbb{C}$ be continuously differentiable. Then

$$F(b)-F(a)=\int_a^b \frac{dF}{dx}\,dx.$$

Total change in F from a to b = Definite integral of rate of change

Consequences of FTC **2**

Theorem (Substitution) Chain rule + FTC 2 = substitution $X \subseteq \mathbb{C}; u : [a, b] \to X, f : X \to \mathbb{C} \text{ cont diff'ble. Then}$

$$\int_{a}^{b} f'(u(x))u'(x) \, dx = f(u(b)) - f(u(a)).$$

In particular, if X a subinterval of $\mathbb R$ and $g:X\to\mathbb C$ cont,

$$\int_{a}^{b} g(u(x))u'(x) dx = \int_{u(a)}^{u(b)} g(u) du.$$
Theorem (Integration by parts)
Let $f, g : [a, b] \to \mathbb{C}$ cont diff'ble. Then Prod rule + FTC 2 = parts
 $\int_{a}^{b} f^{b}$

1

$$\int_{a}^{b} f(x)g'(x) dx = f(b)g(b) - f(a)g(a) - \int_{a}^{b} g(x)f'(x) dx.$$

YOU WOULD NOT BELIEVE HOW IMPORTANT INTEGRATION BY PARTS IS FOR UPPER-LEVEL (GRADUATE) ANALYSIS!!!!

So [Fr.2-F(6)] ≤M/x-51 Wis Front Ats. E.S. Outline (7)670 Let $S(\epsilon) = \epsilon_{M}$ (A) $(x-b) < S(\epsilon) = \epsilon_{M}$ A) $(x-b) < S(\epsilon) = \epsilon_{M}$ Then (F(x)-F(b)) = M 1x· b1 < M = H (F(x)-F(b)) < C

Proof of FTC I: If f cont at b, F'(b) = f(b)Suppose f cont at b. For $x \neq b$, observe: F(x) = f(x) = f(x) + f

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ○ ○ ○

$$\left|\frac{F(x)-F(b)}{x-b}-f(b)\right|=$$

Since f cont at b, there exists $\delta_0(\epsilon_0) > 0$ such that if $|x-b| < \delta_0(\epsilon_0)$, then $|f(x) - f(b)| < \epsilon_0$. Defn of F diff ble at b and F'(b) = f(b): Assume $\epsilon > 0$. Let $\delta(\epsilon) =$) 1x-61<8/8),x75 $\frac{F(b)}{F(b)} = \frac{F'(b)}{F'(b)}$

Ch. 4: Infinite series in \mathbb{C}

Defn:
$$a_n$$
 seq in \mathbb{C} . Series $\sum_{n=k}^{\infty} a_n$ defined as:

▶ Define sequence of partial sums s_N by setting s_k = a_k and, for N ≥ k, setting s_{N+1} = s_N + a_{N+1}. In other words:

$$s_{k} = a_{k}$$

$$s_{k+1} = s_{k} + a_{k+1} = a_{k} + a_{k+1}$$

$$s_{k+2} = s_{k+1} + a_{k+2} = a_{k} + a_{k+1} + a_{k+2}$$

$$s_{k+3} = s_{k+2} + a_{k+3} = a_{k} + a_{k+1} + a_{k+2} + a_{k+3}$$

$$\vdots$$

$$s_{N+1} = s_{N} + a_{N+1} = a_{k} + a_{k+1} + \dots + a_{N+1}$$

$$\vdots$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Ch. 4: Infinite series in \mathbb{C}

• To say that $\sum_{n=k}^{\infty} a_n$ converges means that the sequence of partial sums s_N converges, in which case we define

$$\sum_{n=k}^{\infty} a_n = \lim_{N \to \infty} s_N.$$

Cauchy criterion for series and comparison

Cauchy completeness implies:

Corollary (Cauchy Criterion for Series)

The series $\sum_{k=1}^{m} a_{n}$ converges if and only if for every $\epsilon > 0$, there exists some $N(\epsilon)$ such that if $m, k \in \mathbb{Z}$ and $m, k > N(\epsilon)$, then $\left|\sum_{n=k}^{m} a_{n}\right| < \epsilon$.

Corollary (Comparison Test)

a_n, b_n sequences, b_n ≥ 0.
1. If ∑ b_n converges and |a_n| ≤ b_n for all n (or sufficiently large n), then ∑ a_n converges.
2. If ∑ b_n diverges, a_n ≥ 0, and b_n ≤ a_n for all n (or sufficiently large n), then ∑ a_n diverges.

Absolute convergence

Corollary $If \sum |a_n|$ converges, then so does $\sum a_n$. Definition To say that $\sum a_n$ converges absolutely means that $\sum |a_n|$ converges (and therefore, so does $\sum a_n$).

・ロト・西ト・モン・モー シック

Two-sided series

Definition

Let $a_n : \mathbb{Z} \to \mathbb{C}$ be a **two-sided sequence**, which we can think of as a sequence a_n where n goes to both $+\infty$ and $-\infty$. To say that the the corresponding **two-sided series** $\sum_{n \in \mathbb{Z}} a_n$ converges means

that for some $k \in \mathbb{Z}$, both $\sum_{n=k-1}^{-\infty} a_n$ and $\sum_{n=k}^{\infty} a_n$ converge, in which

case we define

$$\sum_{n\in\mathbb{Z}}a_n=\sum_{n=k-1}^{-\infty}a_n+\sum_{n=k}^{\infty}a_n.$$

Important because in our approach, Fourier series are two-sided series.

Synchronous convergence

:

Defn: Given two-sided sequence a_n , synchronous partial sums s_N are

$$s_{0} = a_{0}$$

$$s_{1} = s_{0} + a_{-1} + a_{1} = a_{-1} + a_{0} + a_{1}$$

$$s_{2} = s_{1} + a_{-2} + a_{2} = a_{-2} + a_{-1} + a_{0} + a_{1} + a_{2}$$

$$\vdots$$

$$s_{N} = s_{N-1} + a_{-N} + a_{N} = \sum_{n=-N}^{N} a_{n}$$

$$\vdots$$

◆□ ▶ ◆□ ▶ ◆ 臣 ▶ ◆ 臣 ▶ ○ 臣 ○ のへで

Synchronous convergence, cont.

To say $\sum_{n \in \mathbb{Z}} a_n$ converges synchronously means the sequence of synchronous partial sums s_N does. Furthermore, if $\sum_{n \in \mathbb{Z}} a_n$ converges synchronously, we define the **synchronous sum** of $\sum_{n \in \mathbb{Z}} a_n$ to be

$$\sum_{n\in\mathbb{Z}}a_n=\lim_{N\to\infty}s_N=\lim_{N\to\infty}\sum_{n=-N}^Na_n$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・