Math 131B, Wed Sep 09

- Use a laptop or desktop with a large screen so you can read these words clearly.
- In general, please turn off your camera and mute yourself.
- Exception: When we do groupwork, please turn both your camera and mic on. (Groupwork will not be recorded.)
- Please always have the chat window open to ask questions.
- Reading for today: 3.4. Reading for Mon: 3.5.
- Outline for PS03 due 11pm, complete PS03 due Mon Sep 14.
- Next problem session Fri Sep 11, 10:00-noon on Zoom.
- Zoom proctoring rehearsal Mon Sep 14. Details over the weekend, but have blank paper ready and be ready to turn on your camera on Mon.
- Exam 1 moved to Mon Sep 21, to cover 2.1-2.5, 3.1-3.4.

Last time

Defn of $\int_{a}^{b} v(x) d x$ and:
Lemma (Sequential Criteria for Integrability)
Let $v:[a, b] \rightarrow \mathbb{R}$ be bounded. Then the following are equivalent.
f. v is integrable on $[a, b]$.
2. There exists a sequence of partitions P_{n} such that

$$
\lim _{n \rightarrow \infty}\left(U\left(v ; P_{n}\right)-L\left(v ; P_{n}\right)\right)=0 . \int \quad \begin{aligned}
& \text { Not by defn, but every } \\
& \text { integral is a limit of Riemann }
\end{aligned}
$$

3. For any $\epsilon>0$, there exists a partition P such that sums!

$$
U(v ; P)-L(v ; P)<\epsilon .
$$

Furthermore, if condition (2) holds, then
So you can prove stuff

$$
\lim _{n \rightarrow \infty} L\left(v ; P_{n}\right)=\int_{a}^{b} v(x) d x=\lim _{n \rightarrow \infty} U\left(v ; P_{n}\right)
$$

Picture of sequential criterion, ϵ version (3)
If, given epsilon, we can choose P such that: total

Then v integrable.

I.e.: To prove v integrable, need to make yellow area small.

Integrals of complex functions 3.3

Definition

$$
f(x)=u(x)+i v(x)
$$

Let $f:[a, b] \rightarrow \mathbb{C}$ be bounded, and let u and v be the real and imaginary parts of f. To say that f is integrable means that both u and v are integrable, in which case we define

$$
\int_{a}^{b} f(x) d x=\int_{a}^{b} u(x) d x+i \int_{a}^{b} v(x) d x
$$

I.e., define integral of a complex function via integral of its real and imaginary parts - so most facts about integrals of complex functions follow by applying real facts twice.

Sequential criterion for complex integrability

(Complex-valued version of (1) <=> (3) from seq crit for
Lemma real-valued functions)
wiggle $=\max$
Let $f:[a, b] \rightarrow \mathbb{C}$ be bounded, and for any partition $P=\left\{x_{0}, \ldots, x_{n}\right\}$ of $[a, b]$ and $1 \leq i \leq n$, define possible difference between two

$$
\mu(f ; P, i)=\overbrace{\sup \left\{|f(x)-f(y)| \mid x, y \in\left[x_{i-1}, x_{i}\right]\right\}} \begin{gathered}
\text { output from } \\
\text {, subinterval } \mathrm{i}
\end{gathered}
$$

$$
E(f ; P)=\sum_{i=1}^{n} \mu(f ; P, i)(\Delta x)_{i} . \begin{aligned}
& \text { Yellow area from previous picture } \\
& \text { now replaced by "weighted max } \\
& \text { wiggle" }
\end{aligned}
$$

Then the following are equivalent.

1. f is integrable on $[a, b]$.
2. For any $\epsilon>0$, there exists a partition P such that $E(f ; P)<\epsilon$.

Algebraic facts about the integral 3,4

Theorem

Let $v, w:[a, b] \rightarrow \mathbb{R}$ integrable, $c>0$. Then $v+w, c v$, and $-v$ are integrable on $[a, b]$, and

$$
\begin{aligned}
& \qquad \begin{array}{l}
\int_{a}^{b}(v(x)+w(x)) d x
\end{array} \int_{a}^{b} v(x) d x+\int_{a}^{b} w(x) d x, \\
& \int_{a}^{b} c v(x) d x=c \int_{a}^{b} v(x) d x, \int_{a}^{b}(c v+d w d d y \\
& \int_{a}^{b}(-v(x)) d x=-\int_{a}^{b} v(x) d x .
\end{aligned}
$$

Additivity of domain
Theorem
For $a<b<c$, let $f:[a, c] \rightarrow \mathbb{C}$ be integrable on $[a, b]$ and $[b, c]$.
Then f is integrable on $[a, c]$ and

$$
\int_{a}^{c} f(x) d x=\int_{a}^{b} f(x) d x+\int_{b}^{c} f(x) d x
$$

Picture:

Example: Monotone functions are integrable

Theorem
Moral of this result: Non-integrable functions have infinite wiggle
Suppose $v:[a, b] \rightarrow \mathbb{R}$ is bounded and increasing (if $x<y$, then $\cup\left(l_{0}\right)$ $v(x) \leq v(y)$). Then v is integrable on $[a, b]$.
Picture:
$B / c \vee$ increasing, on subint, min value at left endpoint, max value is at right endpoint.

$$
S_{0}
$$

$$
\begin{aligned}
& U(v ; p)=\sum_{i=1}^{n} M(v ; P, i) \Delta x
\end{aligned}
$$

$$
\begin{aligned}
& L(v ; p)=\sum_{i=1}^{n} m(v, p, i) \Delta x \\
& =\sum_{i=1}^{n} v\left(x_{i=1}\right) \Delta x \\
& =\sum_{j=0}^{n-1} v\left(x_{j}\right) \Delta x
\end{aligned}
$$

$$
\begin{aligned}
& U(v ; p)-L(v ; p) \\
& =\underbrace{\sum_{i=1}^{n} v\left(x_{i}\right) \Delta x-\sum_{i=0}^{n-1} v\left(x_{i}\right) \Delta x}_{m i d \text { term cance }} \\
& =v\left(x_{n}\right) \Delta x-v\left(y_{0}\right) \Delta x \\
& =(v(a)-v((b)) \Delta x<E
\end{aligned}
$$

Continuity implies integrability
Theorem
If $f:[a, b] \rightarrow \mathbb{C}$ continuous, then f integrable on $[a, b]$.
Picture:
Idea: Use uniform continuity to make sure that difference between max and min on any subinterval is small.

New integrable functions from old

absualue

product
Theorem
If $f, g:[a, b] \rightarrow \mathbb{C}$ are integrable, then $|f(x)|, f(x)^{2}$, and $f(x) g(x)$ are also integrable on $[a, b]$. If we also assume that f and g are real-valued, then $\min (f(x), g(x))$ and $\max (f(x) . g(x))$ are
integrable on $[a, b]$.
Why: Follows from more general lemma:

Lemma

If $f:[a, b] \rightarrow \mathbb{C}$ is integrable, and $\varphi: \mathbb{C} \rightarrow \mathbb{C}$ is continuous, then
$\varphi \circ f:[a, b] \rightarrow \mathbb{C}$ is integrable.
(Proof of more general lemma is complicated!)

Triangle inequality for integrals
Theorem
If $f:[a, b] \rightarrow \mathbb{C}$ integrable,

$$
\left|\int_{a}^{b} f(x) d x\right| \leq \int_{a}^{b}|f(x)| d x .
$$

Why is this like the triangle inequality?

$$
\begin{array}{ll}
\Delta \text { inc } & |z+w| \leq|z| r|w| \\
\text { tor sars } & \left|\sum_{i=1}^{n} z_{n}\right| \leq \sum_{i=1}^{n}\left|z_{n}\right|
\end{array}
$$

So triangle inequality really means that getting rid of cancellation gives you a bigger sum. When you do that for integrals, you get

