
Math 131B, Mon Aug 31

I Use a laptop or desktop with a large screen so you can read
these words clearly.

I In general, please turn off your camera and mute yourself.

I Exception: When we do groupwork, please turn both your
camera and mic on. (Groupwork will not be recorded.)

I Please always have the chat window open to ask questions.

I Reading for today: 3.1-3.2. Reading for Wed: 3.3.

I Outline for PS02 now due Wed Sep 02.

I Next problem session Fri Sep 04, 10:00–noon on Zoom.



How to use Limnu

Limnu is the online whiteboard software we’ll use to collaborate
during problem sessions, office hours, and class.

I Each day we’ll start with a new board, sometimes preloaded
with materials. The board will have an address of the form:

http://go.limnu.com/random-words

The board will usually be shared as a clickable link, either in
chat or in an email before problem sessions.

I Click on the link or type the address into a browser on a
machine where you have a touchscreen (e.g., smartphone or
tablet). If this is your first time using limnu, you may have to
set up an account first.

I Draw and write! And by default, stay in “Move” mode:



Last time

Results about metric spaces and continuity, including (PS02):

Theorem (Bolzano-Weierstrass in C)

Every bounded sequence in C has a convergent subsequence.



Extreme Value Theorem (XVT)

Theorem
Let X be a closed and bounded subset of C, and let f : X → R be
continuous. Then f attains both an absolute maximum and an
absolute minimum on X ; that is, there exist c , d ∈ X such that
f (c) ≤ f (x) ≤ f (d) for all x ∈ X.

Proof: Argument has two parts:

1. First show that f must be bounded.

2. Then show that f attains the sup of its values (i.e., max).

Both parts use:

I B-W on C
I If X is a closed subset of C, and xn is a convergent sequence

in X , then lim
n→∞

xn is still in X .



Proof of boundedness part of XVT







Limits of complex-valued functions

Definition
X ⊆ C nonempty. To say that a is a limit point of X means that
there exists zn in X such that lim

n→∞
zn = a and zn 6= a for all n.

Definition
X ⊆ C nonempty, f : X → C be a function, and let a be a limit
point of X . To say that lim

z→a
f (z) = L means that one of the

following conditions holds:

I (Sequential limit) For every sequence zn in X such that
lim
n→∞

zn = a and zn 6= a for all n, we have that lim
n→∞

f (zn) = L.

I (ε-δ limit) For every ε > 0, there exists some δ(ε) > 0 such
that if |z − a| < δ(ε) and z 6= a, then |f (z)− L| < ε.



Limit laws work like laws of continuity

Limit of the sum is the sum of the limits, etc.

One new wrinkle:

Lemma (Squeeze Lemma)

X ⊆ C nonempty, f , g , h : X → R such that f (z) ≤ g(z) ≤ h(z)
for all x ∈ X, and for some limit point a of X , suppose

lim
z→a

f (z) = L = lim
z→a

h(z).

Then lim
z→a

g(z) = L.

Proof on PS02.



Differentiation

X ⊆ C such that every point of X is a limit point.

Definition
f : X → C, a ∈ X . To say that f is differentiable at a means

f ′(a) = lim
z→a

f (z)− f (a)

z − a
= lim

h→0

f (a + h)− f (a)

h

exists (where h = z − a). To say that f is differentiable on X
means that for all a ∈ X , f is differentiable at a; and to say that f
is continuously differentiable on X means that f is differentiable
on X and f ′ : X → C is continuous.

I.e., it’s 1-variable calculus! (But the variable is complex now.)
And definition used in same way as in 1-variable real calculus.



First laws of calculus work as before

E.g., if f is differentiable at a ∈ X , then f is continuous at a. Also:

Theorem
f , g : X → C are differentiable at a. Then:

1. For c ∈ C, cf is differentiable at a, with derivative
(cf )′(a) = cf ′(a).

2. f + g is differentiable at a, with derivative
(f + g)′(a) = f ′(a) + g ′(a).

3. f is differentiable at a, with derivative f
′
(a) = f ′(a).

4. fg is differentiable at a, with derivative
(fg)′(a) = f ′(a)g(a) + f (a)g ′(a).

5. If g(z) 6= 0 for all z ∈ X, then f /g is differentiable at a, with

derivative

(
f

g

)′
(a) =

g(a)f ′(a)− f (a)g ′(a)

g(a)2
.



Chain rule

Theorem (Chain rule)

If f : X → Y diff at a and g : Y → C diff at f (a), then
g ◦ f : X → C diff at a, and (g ◦ f )′(a) = g ′(f (a))f ′(a).

Best proved using local linearity.



Local linearity

Lemma
TFAE:

I f diff at a.

I There exists some m ∈ C such that if we define

Ef (z) =


f (z)− f (a)

z − a
−m for z 6= a,

0 for z = a,

for all z ∈ X, then Ef (z) is continuous at a (i.e.,
lim
z→a

Ef (z) = 0).

Futhermore, if either (and therefore both) of these conditions hold,
m = f ′(a).



Local linearity (most common special case)

Corollary (Local Linearity)

If f : X → C diff at a ∈ X, then there exists Ef : X → C such that
Ef is continuous at a, Ef (a) = 0, and

f (z) = f (a) + (f ′(a) + Ef (z))(z − a)

for all z ∈ X.



Mean Value Theorem

Theorem (Mean Value Theorem)

Let f : [a, b]→ R be a real-valued function that is continuous on
[a, b] and differentiable on (a, b). Then there exists some
c ∈ (a, b) such that

f (b)− f (a)

b − a
= f ′(c).

Only works for real-valued functions. But it does have
complex-valued consequences, e.g.:

Corollary (Zero Derivative Theorem)

Let X be a path-connected subset of C, and let f : X → C be a
function. Suppose either that f ′(z) = 0 for all x ∈ X, or
X = [a, b], f is continuous on [a, b], and f ′(x) = 0 for all
x ∈ (a, b). Then f is constant on X .


