Math 131B, Wed Aug 26

- Use a laptop or desktop with a large screen so you can read these words clearly.
- In general, please turn off your camera and mute yourself.
- Exception: When we do groupwork, please turn both your camera and mic on. (Groupwork will not be recorded.)
- Please always have the chat window open to ask questions.
- Reading for today: 2.5, 3.1. Reading for Mon: 3.1-3.2.
- PS01 due tonight at 11pm; outline for PS02 due Mon Aug 31.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Next problem session Fri Aug 28, 10:00-noon on Zoom.



Ended with:

- Limit of a sequence in C
- Limit of a sequence in a metric space

 $Cos(2\pi n \left(\frac{s}{13}\right)) \leq 1$

ans list

of a n

to put in here) to get 1

・ロト ・雪 ト ・ ヨ ト ・ ヨ ト

э

Questions?

Dense subsets of a metric space (24)

Let X be a metric space and Y a subset of X. Then it can be shown that the following conditions are equivalent:

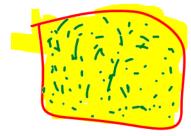
- 1. For every $x \in X$ and every $\epsilon > 0$, there exists some $y \in Y$ such that $d(x, y) < \epsilon$. "Every point of X has a point of Y arb close"
- 2. For every $x \in X$, there exists some sequence y_n in Y such that $\lim_{n \to \infty} y_n = x$. Every point of X is the limit of a seq in Y

Definition

To say that a subset Y of a metric space X is **dense** in X means that either (and therefore, both) of the above conditions hold.

Example

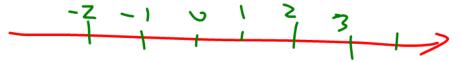
The rationals \mathbb{Q} are a dense subset of the metric space \mathbb{R} .



Picture of a dense subset:

X is the underlying space Y is a kind of "dust" that doesn't take up much area with in X, but is still everywhere.

(Dense subsets will be important to us later when constructing approximations.)



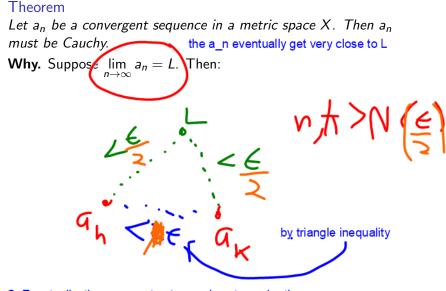
Z is not a dense subset of R, but Q is. (Rational numbers include any finite decimal, so this is related to fact that any real can be approx arb closely by a finite decimal.)

(Z.5) Cauchy sequences in a metric space Need the following idea in a metric space X to replace order completeness: "**Defn**". To say that a_n in X is **Cauchy** means that the points of a_n get closer to each other, instead of closer to some known limit L. I.e.: No matter how epsilon close we require $N(\epsilon)$ 5. $z_{fn,k} > N(\epsilon)$ (then $d(a_{n,a_{k}})$ eventually the terms of the sequence a_n will be that close to

(So it appears that a_n is converging to some limit, even if we don't know what that limit is.)

each other.

Convergent implies Cauchy



C: Eventually, the a_n must get very close to each other.

Bolzano-Weierstrass and Cauchy completeness

I.e., completeness means that any sequences that behaves like a convergent sequence actually converges to a point of X. Definition

To say that a metric space X is **Cauchy complete**, or simply **complete**, means that any Cauchy sequence in X converges to some limit in X.

This is a Big Deal in Analysis I:

Theorem (Bolzano-Weierstrass)

Every bounded sequence in \mathbb{R} has a convergent subsequence.

PS02: Use Bolzano-Weierstrass in $\mathbb R$ to prove same, but for $\mathbb C$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Example of a non-complete space: Take R, delete 0.

 $\ensuremath{\mathbb{C}}$ is a complete metric space Suppose we know B-W in \mathbb{C} (PS02). Then: Corollary INATES The complex numbers are a complete metric space. Sketch of proof. A. Suppose a_n is a Cauchy sequence in C (complex numbers). B-WFord=> Jconvsubseq and St. lim an = LEC Then, since a {n_k} converges to L and the terms of a n are all eventually close to each other, the terms of a_n converge to L C. a_n converges to some L in C.

Defin of continuity for $f : \mathbb{C} \to \mathbb{C}$ (Eventhal': $f : \mathbb{R} \to \mathbb{C}$)

Definition

Let X be a nonempty subset of \mathbb{C} , let $f : X \to \mathbb{C}$ be a function, and let a be a point in X. To say that f is **continuous** at a means that one of the following conditions holds:

- (Sequential continuity) For every sequence x_n in X such that $\lim_{n\to\infty} x_n = a$, we have that $\lim_{n\to\infty} f(x_n) = f(a)$.
- (ϵ-δ continuity) For every ϵ > 0, there exists some δ(ϵ) > 0 such that if |x − a| < δ(ϵ), then |f(x) − f(a)| < ϵ.</p>

Defn of continuity for $f: X \to Y$

Definition

Let X and Y be metric spaces, let $f : X \to Y$ be a function, and let a be a point in X. To say that f is **continuous** at a means that one of the following conditions holds:

- (Sequential continuity) For every sequence x_n in X such that $\lim_{n\to\infty} x_n = a$, we have that $\lim_{n\to\infty} f(x_n) = f(a)$.
- (ε-δ continuity) For every ε > 0, there exists some δ(ε) > 0 such that if d(x, a) < δ(ε), then d(f(x), f(a)) < ε.</p>

To say that f is **continuous on** X means that f is continuous at a for all $a \in X$.

Equivalence of sequential and $\epsilon\text{-}\delta$ continuity

Theorem

Let X and Y be metric spaces, let $f : X \to Y$ be a function, and let a be a point in X. Then f is sequentially continuous at a if and only if f is ϵ - δ continuous at a.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

See book for proof.

Laws of continuity (from calculus)

Theorem Let X be a subset of \mathbb{C} , let $f, g: X \to \mathbb{C}$ be functions, and for some $a \in X$, suppose that f and g are continuous at a. Then: 1. For $c \in \mathbb{C}$, cf(x) is continuous at a. All follow from seq cont 2. f(x) + g(x) is continuous at a. + limit laws for seqs. 3. $\overline{f(x)}$ is continuous at a. 4. f(x)g(x) is continuous at a. 5. If $g(x) \neq 0$ for all $x \in X$, then f(x)/g(x) is continuous at a. Theorem Let X, Y, and Z be metric spaces, let $f: X \to Y$ and $g: Y \to Z$ be functions, let a be a point in X, and suppose that f is

continuous at a and g is continuous at f(a). Then $g \circ f$ is continuous at a.

Pf on PS02

Uniform continuity

Definition 🥑

Let X be a nonempty subset of \mathbb{C} and let $f : X \to \mathbb{C}$ be a function. To say that f is **uniformly continuous** on X means that for every $\epsilon > 0$, there exists some $\delta(\epsilon) > 0$ such that if $x, y \in X$ and $|x - y| < \delta(\epsilon)$, then $|f(x) - f(y)| < \epsilon$.

only ES

Point is that $\delta(\epsilon)$ no longer depends on point of continuity (i.e., no longer $\delta(\epsilon, a)$) which is what you get for f continuous at all $a \in X$. Key fact is:

Theorem

If X is a closed and bounded subset of \mathbb{C} and $f : X \to \mathbb{R}$ is continuous, then f is uniformly continuous on X.

(Another miracle of B-W!)

Extreme Value Theorem (XVT)

Theorem

Let X be a closed and bounded subset of \mathbb{C} , and let $f : X \to \mathbb{R}$ be continuous. Then f attains both an absolute maximum and an absolute minimum on X; that is, there exist $c, d \in X$ such that $f(c) \leq f(x) \leq f(d)$ for all $x \in X$.

Proof: Argument has two parts:

- 1. First show that f must be bounded.
- 2. Then show that f attains the sup of its values (i.e., max).

Both parts use:

- \blacktriangleright B-W on $\mathbb C$
- If X is a closed subset of C, and x_n is a convergent sequence in X, then lim x_n is still in X.

Proof of boundedness part of XVT

▲□▶▲□▶▲≣▶▲≣▶ ≣ のへで