Math 131B, Wed Dec 02

Colloquium 3pm today: Stephanie Salomone, "What I Believe" Especially of interest to future teachers!

- Use a laptop or desktop with a large screen so you can read these words clearly.
- In general, please turn off your camera and mute yourself.
- Exception: When we do groupwork, please turn both your camera and mic on. (Groupwork will not be recorded.)
- Please always have the chat window open to ask questions.
- Reading for today: 12.4. THE END
- Otline for PS11 due tonight; full version due Mon Dec 07.
- Problem session, Fri Dec 04, 10:00am-noon on Zoom. PS|O
- FINAL EXAM, MON DEC 14, 9:45am-noon. bll

Recap

Laplace transform FT for C
$\mathcal{S}(\mathbb{R})$ is the space of all $f: \mathbb{\mathbb { K }} \rightarrow \mathbb{C}$ such that for all $k \geq 0$, the k th derivative $f^{(k)}(x)$ of f exists for all $x \in \mathbb{R}$ and is rapidly decaying.

Definition

For $f \in \mathcal{S}(\mathbb{R})$, define the Fourier transform of f to be the function $\widehat{f}: \mathbb{R} \rightarrow \mathbb{C}$ given by

$$
\hat{f}(\gamma)=\int_{-\infty}^{\infty} f(x) e^{-2 \pi i \gamma x} d x
$$

for any $\gamma \in \mathbb{R}$.
$\gamma=$ freq
Note that because we now assume $t^{\prime} \in \mathcal{S}(\mathbb{R})$, integral definitely converges.

Last week $(f, r \in S(\mathbb{R}))$

- Convolution $f * g: \mathbb{R} \rightarrow \mathbb{C}$ defined by

$$
(f * g)(x)=\int_{-\infty}^{\infty} f(x-t) g(t) d t
$$

Dirac kernel $K_{t}: \mathbb{R} \rightarrow \mathbb{R}(t \in \mathbb{R}, t>0)$:

- For all $t>0$ and all $x \in \mathbb{R}, K_{t}(x) \geq 0$; 7 Prob Aist.
- For all $t>0, \int_{-\infty}^{\infty} K_{t}(x) d x=1$; and \quad For all $t>0$ and $x \in \mathbb{R}, K_{t}(x) \geq 0 ;$
- For fixed $\eta>0$, we have $\lim _{t \rightarrow 0^{+}} \int_{|x| \geq \eta} K_{t}(x) d x=0 . \quad \begin{aligned} & \text { (on } \\ & 0\end{aligned} l$

Thm: $\lim _{t \rightarrow 0^{+}}\left(f * K_{t}\right)(x)=f(x)$.
Example of a Dirac kernel: Gauss kernel DS IO, Prob
$G_{t}(x)=\frac{1}{2} \exp \left(\frac{-\pi x^{2}}{t^{2}}\right)$.

Properties of Fourier transform

	Function (in x)	Fourier transform (in γ)
(1)	$f(x+a)$	$e^{2 \pi i a \gamma} \hat{f}(\gamma)$
6)	$e^{2 \pi i a x} f(x)$	$\hat{f}(\gamma-a)$
(3)	$f(-x)$	$\hat{f}(-\gamma)$

In operator notation:

$$
\begin{aligned}
\underline{U}(f) & =\hat{f} & (\underbrace{s_{-1}}(f))(x) & =f(-x) \\
\left(\tau_{a}(f)\right)(x) & =f(x+a) & \left.\underline{\left(\mu_{a}\right.}(f)\right)(x) & =e^{2 \pi i a x} f(x)
\end{aligned}
$$

The above table says:

$$
\begin{aligned}
& \text { (1) } \begin{aligned}
U\left(\tau_{a}(f)\right) & =\mu_{a}(U(f)) \\
U\left(s_{-1}(f)\right) & =s_{-1}(U(f))
\end{aligned}
\end{aligned}
$$

I.e., $U \tau_{a}=\mu_{a} U, U \mu_{a}=\tau_{-a} U, U s_{-1}=s_{-1} U$.

Recall: How to write Fourier transform with frequency variable same as the
variable you started with (time variable)

$$
\rightarrow \hat{f}(x)=\int_{-\infty}^{\infty} f(y) e^{-2 \pi i x y} d y
$$

Then $u: \int(\mathbb{R}) \rightarrow S(\mathbb{R})$

$$
u(f)=?
$$

"Pass the hat" and the Gauss kernel

Theorem Pass the Hat If $f, g \in \mathcal{S}(\mathbb{R})$, then $\int_{-\infty}^{\infty} \hat{f}(x) g(x) d x=\int_{-\infty}^{\infty} f(x) \hat{g}(x) d x$.
Theorem PS10
The Fourier transform of $f(x)=e^{-\pi x^{2}}$ is $\hat{f}(\gamma)=e^{-\pi \gamma^{2}}$. In other words, f is its own Fourier transform, or $U(f)=f$.
More generally, for $t>0$, let $G_{t}(x)=\frac{1}{t} \exp \left(\frac{-\pi x^{2}}{t^{2}}\right)$ be the Gauss kernel. Then

$$
\hat{G}_{t}(\gamma)=e^{-\pi t^{2} \gamma^{2}}, \quad \circlearrowleft U\left(U\left(G_{t}\right)\right)=\hat{\hat{G}}_{t}=G_{t}
$$

An ugly lemma
Lemma coast var
For $f \in \mathcal{S}(\mathbb{R})$ and constant $x \in \mathbb{R}$, let $h_{x}(y)=f(-x-y)$. Then $\hat{\hat{f}}(x-y)=\hat{h}_{x}(y)$, where the Fourier transform is calculated in the variable $u(u(f))$, then plug $x-y$.
For clarity, \hat{h}_{x} means $U\left(U\left(h_{x}\right)\right)$.

$$
\begin{aligned}
& \text { Proof: First get } h_{x}(v) \text { by applying operators to } f(y) \text {) } S_{0} \\
& \left.h_{x}{ }^{\prime}\right)=f(-x-y)=f(-(y+x)) \quad h_{x} \\
& \left.\left.=\left(s_{-1}(f)\right)_{y}+x\right)=\tau_{x}\left(s_{-1}(f)\right)(y)\right)=\tau_{x} s_{-1} f .
\end{aligned}
$$

$$
\begin{aligned}
& \hat{F}(x-y)=(u(u(f)))(x-y)==(u(u(-1)))(-y-x)) \\
& =\left(s_{-1}(u(u(f)))\left(y^{-}-x\right)=(\tau-n-n \varphi(f))\left(y^{\prime}\right.\right.
\end{aligned}
$$

Inversion Theorem in $\mathcal{S}(\mathbb{R})$

Proof of inversion

$$
\begin{aligned}
& \text { Define } \\
& g(x)=f(-x)=\left(s_{-1}(f)\right)(x) \quad g=s_{-1} f \\
& \begin{array}{lrl}
h_{x}(y)=f(-x-y)=g(x+y) & \text { WTo } \\
\text { ar } \\
& & \text { f }=g
\end{array} \\
& \int_{-\infty}^{\substack{\text { Then for aye fold } \\
\left(\hat{y}+G_{2}(x)\right.}} \int_{-\infty}^{\infty}(x-y) G_{\tau}(y) d y \\
& =\int_{-\infty}^{-\infty} \widehat{\hat{h}}_{x}(y) G_{t}(y) d y
\end{aligned}
$$

$$
\begin{align*}
& =\int_{-\infty}^{\infty} g(x-u) G_{t}(u) d u \\
& =\int_{-\infty}^{\pi} g(x-y) G_{\tau}(y) d y \\
& \text { So: }=\lim _{t \rightarrow 0^{+}}=\left(g^{*} * G_{t}(x)\right.
\end{align*}
$$

Isomorphism Theorem in $\mathcal{S}(\mathbb{R})$
Theorem
For $f, g \in \mathcal{S}(\mathbb{R})$, we have that $\langle f, g\rangle=\langle\hat{f}, \hat{g}\rangle$. In particular,

$$
\|f\|=\|\hat{f}\| .
$$

Compare isomorphism theorem for $L^{2}\left(S^{1}\right)$:
Theorem
For $f, g \in L^{2}\left(S^{1}\right)$, we have that

$$
\begin{aligned}
& f, g \in L^{2}\left(S^{1}\right) \text {, we have that } \\
& \int_{0}^{l} f \bar{g} d x=\langle f, g\rangle=\sum_{n \in \mathbb{Z}} \hat{f}(n) \overline{\hat{g}}(n) .
\end{aligned}
$$

$$
\stackrel{(n)}{\sim} \infty \text { dot prod!. }
$$

If we define $\ell^{2}(\mathbb{Z})$ to be the space of all two-sided $a(n)$ such that
$\sum_{n \in \mathbb{Z}}|a(n)|^{2}<\infty$, then above RHS is $\langle\hat{f}, \hat{g}\rangle$.

