Math 131B, Nov i8

Mon Nov 30

- Use a laptop or desktop with a large screen so you can read these words clearly.
- In general, please turn off your camera and mute yourself.
- Exception: When we do groupwork, please turn both your camera and mic on. (Groupwork will not be recorded.)
- Please always have the chat window open to ask questions.
- Reading for today: 12.3. Reading for Wed Dec 02: 12.4.
- PS10 due tonight; outline for PS11 due Wed Dec 02.
- Problem session, Fri Dec 04, 10:00am-noon on Zoom.
- FINAL EXAM, MON DEC 14.

Recap

Definition

$\mathcal{S}(\mathbb{R})$ is the space of all $f: \mathbb{R} \rightarrow \mathbb{C}$ such that for all $k \geq 0$, the k th derivative $f^{(k)}(x)$ of f exists for all $x \in \mathbb{R}$ and is rapidly decaying.

Definition

For $f \in \mathcal{S}(\mathbb{R})$, define the Fourier transform of f to be the function $\widehat{f}: \mathbb{R} \rightarrow \mathbb{C}$ given by

$$
\hat{f}(\gamma)=\int_{-\infty}^{\infty} f(x) e^{-2 \pi i \gamma x} d x
$$

for any $\gamma \in \mathbb{R}$.
Note that b
converges.
Compare F.S. $f(n)=\int_{0}^{1} f(x) e^{-2 \pi i n x}$

Last time

- Convolution $f * g: \mathbb{R} \rightarrow \mathbb{C}$ defined by $\quad S h M=x$

$$
(f * g)(x)=\int_{-\infty}^{\infty} \underset{f(x-t) g(t) d t .}{ }
$$

- Dirac kernel $K_{t}: \mathbb{R} \rightarrow \mathbb{R}(t \in \mathbb{R}, t>0)$:
- For all $t>0$ and all $x \in \mathbb{R}, K_{t}(x) \geq 0$;
- For all $t>0, \int_{-\infty}^{\infty} K_{t}(x) d x=1$; and

- For fixed $\eta>0$, we have $\lim _{t \rightarrow 0^{+}} \int_{|x| \geq \eta} K_{t}(x) d x=0$.
- Thm: $\lim _{t \rightarrow 0^{+}}\left(f * K_{t}\right)(x)=f(x)$. $\left(f \in \int(R)\right)$
- Example of a Dirac kernel: Gauss kernel

$$
G_{t}(x)=\frac{1}{t} \exp \left(\frac{-\pi x^{2}}{t^{2}}\right) \cdot G_{1}=e^{-\pi X^{2}}
$$

Operator notation for Fourier transform

Sometimes write $U(f)$ instead of \hat{f}. This goes with letting the transform variable be x instead of γ :

$$
(U(f))(x)=\hat{f}(x)=\int_{-\infty}^{\infty} f(y) e^{-2 \pi i x y} d y
$$

This makes it easier to think of the Fourier tranform as an operator U on the function space $\mathcal{S}(\mathbb{R})$. We will see momentarily that U sends $\mathcal{S}(\mathbb{R})$ to $\mathcal{S}(\mathbb{R})$. Perhaps more importantly, in this notation, the inversion theorem boils down to proving that $f^{\prime}(U(f))=s_{-1}(f)$, where the function $s_{-1}(f)$ is defined by $\left(s_{-1}(f)\right)(x)=f(-x)$.

$$
\hat{f}(x)=f(-x)
$$

Properties of Fourier transform

For $f \in \mathcal{S}(\mathbb{R})$:

Function (in $x)$	Fourier transform (in γ)
$f(x+a)$	$e^{2 \pi i a \gamma} \hat{f}(\gamma)$
$e^{2 \pi i a x} f(x)$	$\hat{f}(\gamma-a)$
	$f(b x)$
$f(-x)$	$\frac{1}{b} \hat{f}\left(\frac{\gamma}{b}\right)$
$f^{\prime}(x)$	$\hat{f}(-\gamma)$
$(-2 \pi i x) f(x)$	$(2 \pi i \gamma) f(\gamma)$

And crucially, for $f, g \in \mathcal{S}(\mathbb{R})$,

Compare Fourier series: For $f, g \in C^{0}\left(S^{1}\right)$,

$$
\widehat{f * g}(n)=\hat{f}(n) \hat{g}(n) .
$$

Note!

$$
\begin{array}{ll}
1 & \left.\int_{-\infty}^{\infty} f(x) d x\right] \\
= & \left.\int_{-\infty}^{\infty} f(u-a) d u \quad \begin{array}{l}
\text { sub. } \\
u=x+a \\
d u=d x \\
= \\
= \\
\int_{-\infty}^{\infty} f(x-a) d x
\end{array} \right\rvert\, \begin{array}{l}
\int_{-\infty}^{\infty} d x \\
\text { trans. invt } .
\end{array}
\end{array}
$$

Proofs of properties of Fourier transform
Proofs use all of our old favorites: Substitutidd, parts, differentiation under the integral sign, Fubini.
As examples, we prove:

- If $g(x)=f(b x)(b>0)$, then $\hat{g}(\gamma)=\frac{1}{b} \hat{f}\left(\frac{\gamma}{b}\right)$.
- If $h(x)=f(-x)$, then $\hat{h}(\gamma)=\hat{f}(-\gamma)$.

Proof:

$$
\begin{aligned}
\hat{g}(\gamma)=\int_{-\infty}^{\infty} g(x) e^{-2 \pi i r x} d x \\
=\int_{-\infty}^{\infty} f(10 x) e^{-2 \pi i \gamma x} d x \quad \begin{array}{l}
4 \\
=b x \\
d h>b d x \\
x
\end{array}=\frac{4}{b}
\end{aligned}
$$

$$
\begin{aligned}
& \quad=\int_{-\infty}^{\infty} f(u) e^{-2 \pi i \gamma\left(\frac{u}{b}\right)}\left(\frac{1}{b}\right) d u \\
& \Delta s x \rightarrow+\infty, u \rightarrow+\infty . \\
& =\frac{1}{b} \int_{-\infty}^{\infty} f(u) e^{-2 \pi i\left(\frac{r}{b}\right) u} d u \\
& =\frac{1}{b} \hat{f}\left(\frac{r}{b}\right) . \quad b=-1 ? \\
& G_{c t}-\int_{\infty}^{\infty} m \sim=\int_{-\infty}^{\infty} w=f(-\gamma)
\end{aligned}
$$

The Fourier transform preserves $\mathcal{S}(\mathbb{R})$
Sketch:
Suppose $f \in \mathcal{S}(\mathbb{R})$. $\quad f \in \overbrace{}^{(k)}$ delay rapidly

- By the table and induction, can show that for any $n, k \geq 0$, $\gamma^{n} \hat{f}^{(k)}(\gamma)$ is the Fourier transform of $\left.\left(\frac{1}{2 \pi i} \frac{d}{d x}\right)^{n}(-2 \pi i x)^{k} f(x).\right)$ In particular $\underbrace{\left.\hat{f}^{(k)}(\gamma)\right)}$ exists for all $k \geq 0$.
Fourier transform of any Schwartz function is bounded:

$$
\begin{aligned}
& |\hat{g}(\gamma)|=\left|\int_{-\infty}^{\infty} g(x) e^{-2 \pi i \gamma x} d x\right| \\
& \leq \int_{-\infty}^{\infty}\left|g(x) e^{-2 \pi i r x}\right| d x=\int_{-\infty}^{\infty} \lg (x) \mid \operatorname{lx}=M \\
& \text { So } \gamma^{n} \hat{f}^{(k)}(\gamma) \text { is bounded for all } n, k \geq 0 \text {, ide., } \hat{f} \in \mathcal{S}(\mathbb{R}) \text {. }
\end{aligned}
$$

(ind of γ)

The "Pass the hat" formula
Theorem
If $f, g \in \mathcal{S}(\mathbb{R})$, then $\int_{-\infty}^{\infty} \hat{f}(x) g(x) d x=\int_{-\infty}^{\infty} f(x) \hat{g}(x) d x$.

$$
\begin{aligned}
& \int_{-\infty}^{\infty} f(x) g(x) d x \\
= & \int_{-\infty}^{\infty}\left(\int_{-\infty}^{\infty} f(y) e^{-2 \pi i x y} y\right) g(x) d x \\
= & \left.\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(x) f(y) e^{-2 \pi i x y} d y d x\right)^{-\infty}
\end{aligned}
$$

$$
\begin{aligned}
& =\int_{-\infty}^{\infty}\left(\int_{-\infty}^{\infty} g(x) f(y) e^{-2 \pi i x y} d x\right) d y \\
& =\int_{-\infty}^{\infty}\left(\int_{-\infty}^{\infty} g(x) e^{-2 \pi i x y} d x\right) f(y) d y \\
& =\int_{-\infty}^{\infty} \hat{g}(y) f(y) d y=-\int_{-\infty}^{\infty} f(x) \hat{g}(x) d x
\end{aligned}
$$

The Gauss kernel

Theorem

The Fourier transform of $f(x)=e^{-\pi x^{2}}$ is $\hat{f}(\gamma)=e^{-\pi \gamma^{2}}$. In other words, f is its own Fourier transform, or $U(f)=f$.
More generally, for $t>0$, let $G_{t}(x)=\frac{1}{t} \exp \left(\frac{-\pi x^{2}}{t^{2}}\right)$ be the
Gauss kernel. Then

$$
\hat{G}_{t}(\gamma)=e^{-\pi t^{2} \gamma^{2}}, \quad U\left(U\left(G_{t}\right)\right)=\hat{\hat{G}}_{t}=G_{t}
$$

Proof: PS11.

