Math 131B, Wed Nov 18

- Use a laptop or desktop with a large screen so you can read these words clearly.
- In general, please turn off your camera and mute yourself.
- Exception: When we do groupwork, please turn both your camera and mic on. (Groupwork will not be recorded.)
- Please always have the chat window open to ask questions.
- Reading for today: 12.2. Reading for Mon Nov 30: 12.3.
- Outline for PS10 due Fri Nov 20; PS10 due Fri Nov 30. Mol
- Problem session/exam review, Fri Nov 20, 9:00–11:00am on Zoom. 131B segment starts at 9:00am.

- ロト - 御 ト - 王 ト - 王 - 王

EXAM 3, MON NOV 23.

Recap Definition Schwartzspace $\mathcal{S}(\mathbb{R})$ is the space of all $f: \mathbb{R} \to \mathbb{C}$ such that for all $k \ge 0$, the kth derivative $f^{(k)}(x)$ of f exists for all $x \in \mathbb{R}$ and is rapidly decaying. -> O fuster Lim Definition For $f \in \mathcal{S}(\mathbb{R})$, define the **Fourier transform** of f to be the $\hat{f}(\gamma) = \int_{-\infty}^{\infty} f(x)e^{-2\pi i\gamma x} dx$ $\begin{cases}
\begin{array}{c}
\begin{array}{c}
\begin{array}{c}
\end{array} \\
\end{array} \\
\end{array} \\
\end{array} \\
\begin{array}{c}
\end{array} \\
\end{array}$ function $f: \mathbb{R} \to \mathbb{C}$ given by for any $\gamma \in \mathbb{R}$. Note that because we now assume $f \in \mathcal{S}(\mathbb{R})$, integral definitely converges.

The plan((2,))think + like +

Almost the same plan as the proof of the inversion theorem:

- 1. Convolutions 2. Dirac kernels K_t 5. Prove $\lim_{t\to 0^+} (f * K_t)(x) = f(x)$. 5. f(x) = f(x). 5. f(x) = f(x).
 - 4. Specific example of a Dirac kernel (Gauss kernel)

- > - 4 同 > - 4 回 > - 4 回 >

Convolution

 $(S(\mathbf{R}))$ Definition For $f, g \in L^2(\mathbb{R})$, the **convolution** $f * g : \mathbb{R} \to \mathbb{C}$ is defined by $(f * g)(x) = \int_{-\infty}^{\infty} f(x-t)g(t) dt.$ ersion for $f,g \in L^2(S^1)$: $(f * g)(x) = \int_0^1 f(x-t)g(t) dt.$ Compare the version for $f, g \in L^2(S^1)$:

・ ロ ト ・ 雪 ト ・ 雪 ト ・ 日 ト

O. (mitter) Properties of convolution Theorem If $f, g \in C^0(\mathbb{R})$ are rapidly decaying, then f * g is rapidly decaying. Moreover, suppose $f, g, h \in \mathcal{S}(\mathbb{R})$. Then: P(x) = (g * f)(x).2. ((f * g) * h)(x) = (f * (g * h))(x). 15 10^{3.} $\frac{d}{dx}((f * g)(x)) = \left(\frac{df}{dx} * g\right)(x)$. Smoothing 4. $f * g \in \mathcal{S}(\mathbb{R})$. Proof of last property, assuming previous ones: $\overline{A} + \eta \in S(R)$ Prop3=> (+*g)' = (f*g) txists on (K

BIC f & S(R), f' & S(K) (bic f' & c ~) =) (f' * g) vapil decay. (Brop D) Prup 3=> (f*g)" = (f"*g) erills Bic f'ES(R), f"ES(R) And so on ... =>(f"*g) rapil decay (induction) C) For KED, X+IR, (f*g)⁽¹⁾(x) exists and (f*g)⁽⁴⁾(X) rapid decay. $O \{ *_{g} \in S(\mathbf{R}) \}$

Dirac kernel (\mathbb{R} version)

Definition

A **Dirac kernel on** \mathbb{R} is a family of continuous $K_t : \mathbb{R} \to \mathbb{R}$ $(t \in \mathbb{R}, t > 0)$ integrable on \mathbb{R} s.t.:

1. For all t > 0 and all $x \in \mathbb{R}$, $K_t(x) \ge 0$; **ported** r^{∞} area]

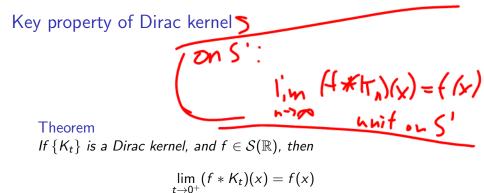
2. For all
$$t > 0$$
, $\int_{-\infty} K_t(x) dx = 1$; and

3. For any fixed $\eta > 0$, we have $(\underbrace{\mathsf{Contentratel}}_{t \to 0^+} \int_{|x| \ge \eta} K_t(x) \, dx = 0. \quad \square$

I.e., for $\eta > 0$, $\epsilon > 0$, $\exists \ \delta(\eta, \epsilon) > 0$ s.t. for $0 < t < \delta(\eta, \epsilon)$,

$$1-\epsilon < \int_{-\eta}^{\eta} {\mathcal K}_t(x) \, dx \leq 1.$$

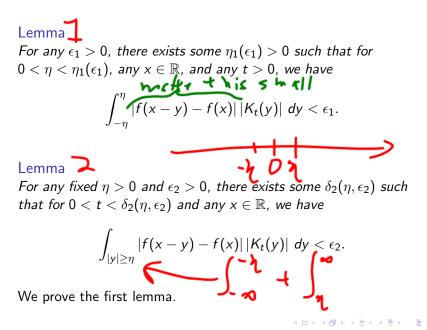
See Maple.



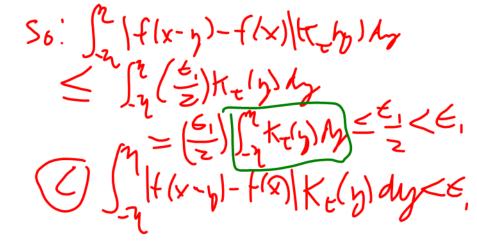
uniformly on \mathbb{R} (i.e., with convergence independent of $x \in \mathbb{R}$). Proof uses two lemmas.

(日)

Lemmas for key property of Dirac kernel



(A) \in , 70 Fact (4.7) $f \in S(\mathbb{R}) \rightarrow f$ unif cont. So V 6,>0,75 (() st. if 14- 1< Sfes), then $|f(x)-f(v)| < \epsilon_0$ Let $\eta_i(\epsilon_i) = \delta_i(\frac{\epsilon_i}{2})$. (H) 0< M< Y, (E,), (70) Then for $|y| \leq \gamma < \gamma_1(\varepsilon_1)$, 1(x·y)-x1=1y < 2,(e1)= & (=) s |+(x-y)-f(x)| < 些.



Proof of key property of Dirac kernels

Theorem If $\{K_t\}$ is a Dirac kernel, and $f \in S(\mathbb{R})$, then

$$\lim_{t\to 0^+} (f * K_t)(x) = f(x)$$

uniformly on \mathbb{R} (i.e., with convergence independent of $x \in \mathbb{R}$). Sketch of proof:

 $\left| \left(f * k_{-1} | x | - f | x \right) \right|$ $\leq \cdots \leq \int_{-\infty}^{\infty} |f(x-y| - f | x | y | y)$ $(F \in >0 \quad Let \ x_{i} = \underbrace{\xi}_{i} \in \underbrace{\xi}_{i} = \underbrace{\xi}_{i}.$

 $Let S(e) = S_2(t_2, n)$ O < t < S(e) lin Lemma | & Lem 2 U = U = U $|F*\pi_t(R)-f(R)| < \epsilon.$

The Gauss kernel

$$exp(y) = e^{y}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Example

The **Gauss kernel** $\{G_t\}$ is

$$G_{t}(x) = \frac{1}{t} \exp\left(\frac{-\pi x^{2}}{t^{2}}\right) = \frac{1}{t} e^{-\pi x^{2}/t^{2}}$$

For example, $G_{1}(x) = e^{-\pi x^{2}/t^{2}}$
See Maple.

Gauss kernel works

Theorem The Gauss kernel G_t is a Dirac kernel. Recall (PS10): $\int_{-\infty}^{\infty} G_1(x) = \int_{-\infty}^{\infty} e^{-\pi x^2} dx = 1.$ Other properties of G_t follow from substitution (!!); see PS10.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで