Math 131B, Mon Nov 16

- Use a laptop or desktop with a large screen so you can read these words clearly.
- In general, please turn off your camera and mute yourself.
- Exception: When we do groupwork, please turn both your camera and mic on. (Groupwork will not be recorded.)
- Please always have the chat window open to ask questions.
- Reading for today: 4.7, 4.8, 12.1. Reading for Wed: 12.2.
- PS09 due today. Outline for PS10 due Fri Nov 20.
- Problem session/exam review, Fri Nov 20 9:00-11:00am on Zoom.
- EXAM 3, MON NOV 23.

Extra Derivative Lemma Lemma If $g \in L^{2}\left(S^{1}\right)$, then the two-sided series

$$
\sum_{\substack{n \in \mathbb{Z} \\ n \neq 0}}\left(\frac{1}{2 \pi n}\right) \hat{g}(n)
$$

converges absolutely (as a series of complex numbers). Proof:
HSACT: $\left.\sum c_{n} e_{n} \operatorname{convj} \Leftrightarrow \sum k_{n}\right|^{2}$ to $f \in L^{2}\left(s^{\prime}\right)$ consing R
L2 inn: $\sum \hat{g}(n) e_{n}(x)$ cons tog.
${ }_{k<斤}^{4 S} \Rightarrow \sum|g(\omega)|^{2}$ cons

$\sum_{n \neq 0}\left(\frac{1}{2 \pi n}\right)^{2}$ (onvs loy p-sesies $(p=2>1)$
 So, since (f, h) is finite, ar A $\langle f, h\rangle$
$\left(\frac{I_{\text {som }}}{\text { Thm }}\right)$

This is called the XDL b/c we were able to prove that $\mathrm{C}^{\wedge} 2$ functions had absolutely convergent Fourier series with our "bare hands" (Ch. 6).

The XDL allows us to prove the same for $\mathrm{C}^{\wedge} 1$ functions:
C^{1} uniform convergence
Bare hands. If $f \in C^{2} / s^{\prime}$), F. S. if f cor to something.
Theorem
Suppose $f \in C^{1}\left(S^{1}\right)$. Then the Fourier series of f converges absolutely and uniformly to f.
Proof: We first show that the Fourier series of f converges absolutely and uniformly to some $g \in C^{0}\left(S^{1}\right)$. (This is on PS09.)

Therefore, for all $n \in \mathbb{Z}, \hat{g}(n)=\hat{f}(n)$. However, then implies that $f=g$ a.e., and since both f and g are continuous, measure 0 stuff, implies that $f=g$ everywhere.

Sect 7.4: If f, g continuous, and equal almost everywhere, then $\mathrm{f}=\mathrm{g}$ everywhere.

Summary

$\sqrt[L]{ } L^{2}$ inversion theorem: If $f \in L^{2}\left(S^{1}\right)$, then the Fourier series of f converges to f in the L^{2} metric. In other words, we can recover f completely (in L^{2}) from $\hat{f}(n) . \quad f(X)=\sum_{n \in \mathbb{Z}} f(n) e^{2 \pi i n x}$

However, f is only recovered "up to a set of measure zero".

$$
f^{\prime} \text { cont on } S^{\prime}
$$

C^{1} inversion theorem: If $f \in C^{1}\left(S^{1}\right)$, then the Fourier series of f converges absolutely and uniformly to f.

4.7: The Schwartz space $=$ nicest possible functions whose domain

Think: f decays exponentially as x-> +/- infinity

To say that a continuous function $f: \mathbb{R} \rightarrow \mathbb{C}$ is rapidly decaying means that one of the following equivalent conditions holds:

1. For any $n \geq 0, x^{n} f(x)$ is bounded on \mathbb{R}.
2. For any $n \geq 0, \lim _{x \rightarrow \pm \infty} x^{n} f(x)=0$.
l.e.ms $x \rightarrow \pm \infty, f(x)$ goes to 0 faster than any function $1 / x^{n}$.
fn
$\mathcal{O}(\mathbb{R})$ is the space of all $f: \mathbb{R} \rightarrow \mathbb{C}$ such that for all $k \geq 0$, the k th derivative $f^{(k)}(x)$ of f exists for all $x \in \mathbb{R}$ and is rapidly decaying.

$$
\left(S O f \in C^{\infty}(\mathbb{R})\right)
$$

(Non)examples in $\mathcal{S}(\mathbb{R})$
THE example: If $p(x)$ is a polynomial and $a>0$, then $f(x)=p(x) e^{-a x^{2}+b x}$ is in $\mathcal{S}(\mathbb{R})$. (See PS10.)

Non-examples:
$g(x)=e^{-|x|}$
$e^{-\pi x^{2}}$
eray

Integration by parts on \mathbb{R}

Much of calculus can be extended to (improper) integrals on all of \mathbb{R}, i.e., $\int_{-\infty}^{\infty} f(x) d x$, when that converges. (E.g., when $f \in \mathcal{S}(\mathbb{R})$.) For example:

Theorem (Integration by Parts on \mathbb{R})
Suppose that $f, g: \mathbb{R} \rightarrow \mathbb{C}$ are differentiable, f^{\prime} and g^{\prime} are continuous on $\mathbb{R}, f(x) g^{\prime}(x)$ is integrable on \mathbb{R}, and both $\lim _{a \rightarrow-\infty} f(a) g(a)$ and $\lim _{b \rightarrow \infty} f(b) g(b)$ exist. Then $g(x) f^{\prime}(x)$ is integrable on \mathbb{R}, and

$$
\begin{aligned}
& \int_{-\infty}^{\infty} f(x) g^{\prime}(x) d x= \\
& \underbrace{\left.f(x) g(x)\right|_{-\infty} ^{\infty}-\int_{-\infty}^{\infty} g(x) f^{\prime}(x) d x}_{\text {f omitted for time. }} . \\
& \in S(\mathbb{R}), t h i s=0
\end{aligned}
$$

Differentiating under the integral sign on \mathbb{R}

Theorem
Suppose $f(x, y)=h(x, y) k(y)$, where $|h(x, y)| \leq C$ for all
$x, y \in \mathbb{R}$ and $k(y) \in \mathcal{S}(\mathbb{R})$, and suppose $\frac{\partial f}{\partial x}$ is continuous on
$[a, b] \times \mathbb{R}$ (as a function of two variables). Let

$$
F(x)=\int_{-\infty}^{\infty} f(x, y) d y
$$

Then for all $x \in[a, b]$,

$$
F^{\prime}(x)=\frac{d}{d x} \int_{-\infty}^{\infty} f(x, y) d y=\int_{-\infty}^{\infty} \frac{\partial f}{\partial x} d y \text {-102. }
$$

Proof omitted for time.

Fubini's theorem on \mathbb{R}

Theorem

Suppose $f, g \in \mathcal{S}(\mathbb{R})$, and $G \in C^{1}\left(\mathbb{R}^{2}\right)$ is such that $G, \frac{\partial G}{\partial x}$, and ∂G are all bounded. Suppose also that either
$F(x, y)=G(x, y) f(x) g(y)$ or $F(x, y)=G(x, y) f(x-y) g(y)$.
Then both sides of

$$
\int_{-\infty}^{\infty}\left(\int_{-\infty}^{\infty} F(x, y) d y\right) d x=\int_{-\infty}^{\infty}\left(\int_{-\infty}^{\infty} F(x, y) d x\right) d y
$$

converge and are equal.
Again, proofs omitted for time.

12.1: The Fourier Transform

"Definition"

 $|f(x)|^{2}<\infty$For $f \in L^{2}(\mathbb{R})$, define the Fourier transform of f to be the function $(\mathbb{g}: \mathbb{R} \rightarrow \mathbb{C}$ given by

$$
7^{4}
$$

for any $\gamma \in \mathbb{R}$.
Compare

$$
\hat{f}(\gamma)=\int_{-\infty}^{\infty} \underbrace{f(x) e^{-2 \pi i \gamma x} d x}
$$

Integrate in x , treating gamma as constant; result is a fn of gamma.

$$
\hat{f}(n)=\int_{0}^{1} f(x) e^{-2 \pi i n x} d x
$$

for $f: S^{1} \rightarrow \mathbb{C}$ and $n \in \mathbb{Z}$. Just as n represents a discrete "frequency" for $f \in L^{2}\left(S^{1}\right)$, γ represents a continuous "frequency" for $f \in L^{2}(\mathbb{R})$.

Questions about the Fourier Transform

1. Recall that to say that $f \in L^{p}(\mathbb{R})$ means that

$$
\int_{-\infty}^{\infty}|f(x)|^{p} d x
$$

is finite. (Think $p=1$ or 2 .)
Well, if $f \in L^{2}(\mathbb{R})$, not obvious that

$$
\hat{f}(\gamma)=\int_{-\infty}^{\infty} f(x) e^{-2 \pi i \gamma x} d x
$$

is finite for all $\gamma \in \mathbb{R}$, i.e., not clear that the Fourier transform \hat{f} exists!
2. If \hat{f} does actually exist, to what extent can we recover f from \hat{f} ?

Goal (that we won't quite reach)

Theorem (Inversion Theorem for the Fourier Transform) If $f \in L^{2}(\mathbb{R})$ and $\hat{f}(\gamma)$ is defined by

$$
\hat{f}(\gamma)=\int_{-\infty}^{\infty} f(x) e^{-2 \pi i \gamma x} d x
$$

then f can be recovered from $\hat{f}(\gamma)$ by the inverse Fourier transform

$$
f(x)=\int_{-\infty}^{\infty} \text { F(a) } e^{2 \pi i x \gamma} d \gamma
$$

We'll only consider the case where $f \in \mathcal{S}(\mathbb{R})$, where we can do everything very concretely; the full L^{2} theorem requires more abstraction.

Comparing Fourier series

Compare Inversion Theorem for Fourier Series: If $f \in L^{2}\left(S^{1}\right)$ and

$$
\hat{f}(n)=\int_{0}^{1} f(x) e^{-2 \pi i n x}
$$

then

$$
f(x)=\sum_{n \in \mathbb{Z}} \hat{f}(n) e^{2 \pi i n x}
$$

in the L^{2} metric.

Helpful to keep in mind:

	Function variable	Transform variable
Fourier series	$x \in S^{1}$	$n \in \mathbb{Z}$
Fourier transform	$x \in \mathbb{R}$	$\gamma \in \mathbb{R}$

The plan

Use same kinds of tools as in Ch. 8:

- Convolution
- Dirac kernel G_{t}
- Limit of $f * G_{t}$ is f

Then we show that inversion theorem works for G_{t}, and leverage that to show that inversion theorem works in general.

