Math 131B, Mon Nov 16

- Use a laptop or desktop with a large screen so you can read these words clearly.
- In general, please turn off your camera and mute yourself.
- Exception: When we do groupwork, please turn both your camera and mic on. (Groupwork will not be recorded.)
- Please always have the chat window open to ask questions.
- Reading for today: 4.7, 4.8, 12.1. Reading for Wed: 12.2.
- PS09 due today. Outline for PS10 due Fri Nov 20.
- Problem session/exam review, Fri Nov 20 9:00-11:00am on Zoom.

EXAM 3, MON NOV 23. PS7-9, Ch7-8

Extra Derivative Lemma

lemma If $g \in L^2(S^1)$, then the two-sided series

$$\sum_{\substack{n\in\mathbb{Z}\\n\neq 0}} \left(\frac{1}{2\pi n}\right) \hat{g}(n)$$

converges absolutely (as a series of complex numbers).

Proof:

HSACT: Schen (Invice) Zknl² to fel2(s') Onvin R Le inc' Z g(w) en(x) conv to g. ∋ ≤ lg(w)² convs

 $\underset{h \in \mathbb{Z}}{\overset{hs}{=}} \sum_{n \in \mathbb{Z}} [\tilde{g}(n)] c_n(x) \text{ convstisome} \\ h \in L^2(\varsigma')$ $\sum_{n\neq 0} \frac{1}{2\pi n} \cos by p - spins (p=2>1)$ $\begin{array}{l} \underset{\mu \neq 0}{\overset{HS}{=}} \underbrace{\sum}_{\mu \neq 0} \underbrace{\left| \underset{\mu \neq 0}{\overset{He}{=}} e_{\mu}(x) (\operatorname{invs} t_{\mu} \operatorname{some}_{\mu} e_{\mu}(x)) (\operatorname{invs} t_{\mu} \operatorname{some}_{\mu} e_{\mu}(x)) \right|}_{f \in L^{2}(S')} \\ \begin{array}{l} \underset{\chi \neq 0}{\overset{S}{=}} \\ \underset{\chi \neq 0}{\overset{S}{=}} \underbrace{\operatorname{Som}}_{\chi \neq 0} \\ \underset{\chi \neq 0}{\overset{S}{=}} \\ \underset{\chi \neq 0}{\overset{S}{=}} \underbrace{\operatorname{Som}}_{\chi \neq 0} \\ \underset{\chi \neq 0}{\overset{S}{=}} \\ \begin{array}{l} \underset{\chi \neq 0}{\overset{S}{=}} \\ \begin{array}{l} \underset{\chi \neq 0}{\overset{S}{=}} \\ \underset{\chi \neq 0}{\overset{S}{=} } \\ \underset{\chi \neq 0}{\overset{S}{=} } \\ \underset{\chi \neq 0}{\overset{S}{=} } \\ \underset{\chi \to 0$

Isom Thm for Hilbert Spaces: B/c {e_n} are an orthonormal basis, we can compute inner Convs. products as dot products of Fourier coefficients. G(n) convs. abs.

This is called the XDL b/c we were able to prove that C² functions had absolutely convergent Fourier series with our "bare hands" (Ch. 6).

The XDL allows us to prove the same for C^1 functions:

C^1 uniform convergence

Grewhold: Tfff(r), F.S. f **f** (on to something. Theorem Suppose $f \in C^1(S^1)$. Then the Fourier series of f converges absolutely and uniformly to f. Proof: We first show that the Fourier series of f converges

Proof: We first show that the Fourier series of f converges absolutely and uniformly to some $g \in C^0(S^1)$. (This is on PS09.)

Therefore, for all $n \in \mathbb{Z}$, $\hat{g}(n) = \hat{f}(n)$. However, then implies that f = g a.e., and since both f and g are continuous, measure 0 stuff implies that f = g everywhere.

Sect 7.4: If f, g continuous, and equal almost everywhere, then f=g everywhere.

Summary

 L^2 inversion theorem: If $f \in L^2(S^1)$, then the Fourier series of f converges to f in the L^2 metric. In other words, we can recover f completely (in L^2) from $\hat{f}(n)$. However, f is only recovered "up to a set of measure zero". ct contons' C^1 inversion theorem: If $f \in C^1(S^1)$, then the Fourier series of f converges absolutely and uniformly to f.

・ロット (雪) (日) (日) (日)

To say that a continuous function $f : \mathbb{R} \to \mathbb{C}$ is **rapidly decaying** means that one of the following equivalent conditions holds:

1. For any $n \ge 0$, $x^n f(x)$ is bounded on \mathbb{R} .

2. For any
$$n \ge 0$$
, $\lim_{x \to \pm \infty} x^n f(x) = 0$.

I.e., as $x \to \pm \infty$, f(x) goes to 0 faster than any function $1/x^n$.

 $\mathcal{S}(\mathbb{R})$ is the space of all $f : \mathbb{R} \to \mathbb{C}$ such that for all $k \ge 0$, the kth derivative $f^{(k)}(x)$ of f exists for all $x \in \mathbb{R}$ and is rapidly decaying.

 $(Sofe(^{\infty}(\mathbb{R})))$

Integration by parts on ${\mathbb R}$

Much of calculus can be extended to (improper) integrals on all of \mathbb{R} , i.e., $\int_{-\infty}^{\infty} f(x) dx$, when that converges. (E.g., when $f \in S(\mathbb{R})$.) For example:

Theorem (Integration by Parts on \mathbb{R})

Suppose that $f, g : \mathbb{R} \to \mathbb{C}$ are differentiable, f' and g' are continuous on \mathbb{R} , f(x)g'(x) is integrable on \mathbb{R} , and both $\lim_{a \to -\infty} f(a)g(a)$ and $\lim_{b \to \infty} f(b)g(b)$ exist. Then g(x)f'(x) is integrable on \mathbb{R} , and

$$\int_{-\infty}^{\infty} f(x)g'(x) dx = f(x)g(x)\Big|_{-\infty}^{\infty} - \int_{-\infty}^{\infty} g(x)f'(x) dx.$$
Proof omitted for time.

Differentiating under the integral sign on $\mathbb R$

Theorem Suppose f(x, y) = h(x, y)k(y), where $|h(x, y)| \le C$ for all $x, y \in \mathbb{R}$ and $k(y) \in S(\mathbb{R})$, and suppose $\frac{\partial f}{\partial x}$ is continuous on $[a, b] \times \mathbb{R}$ (as a function of two variables). Let

$$F(x)=\int_{-\infty}^{\infty}f(x,y)\,dy.$$

Then for all $x \in [a, b]$,

$$F'(x) = \frac{d}{dx} \int_{-\infty}^{\infty} f(x, y) \, dy = \int_{-\infty}^{\infty} \frac{\partial f}{\partial x} \, dy$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Proof omitted for time.

Fubini's theorem on $\mathbb R$

Theorem

Suppose $f, g \in S(\mathbb{R})$, and $G \in C^1(\mathbb{R}^2)$ is such that $G, \frac{\partial G}{\partial x}$, and $\frac{\partial G}{\partial y}$ are all bounded. Suppose also that either F(x, y) = G(x, y)f(x)g(y) or F(x, y) = G(x, y)f(x - y)g(y). Then both sides of

$$\int_{-\infty}^{\infty} \left(\int_{-\infty}^{\infty} F(x,y) \, dy \right) \, dx = \int_{-\infty}^{\infty} \left(\int_{-\infty}^{\infty} F(x,y) \, dx \right) \, dy$$

converge and are equal.

Again, proofs omitted for time.

12.1: The Fourier Transform
Definition
For
$$f \in L^2(\mathbb{R})$$
, define the Fourier transform of f to be the function $f: \mathbb{R} \to \mathbb{C}$ given by
 $\hat{f}(\gamma) = \int_{-\infty}^{\infty} f(x)e^{-2\pi i\gamma x} dx$

for any $\gamma \in \mathbb{R}$.

Compare

Integrate in x, treating gamma as constant; result is a fn of gamma.

$$\hat{f}(n) = \int_0^1 f(x) e^{-2\pi i n x} \, dx$$

for $f: S^1 \to \mathbb{C}$ and $n \in \mathbb{Z}$. Just as *n* represents a discrete "frequency" for $f \in L^2(S^1)$, γ represents a continuous "frequency" for $f \in L^2(\mathbb{R})$.

Questions about the Fourier Transform

1. Recall that to say that $f \in L^{p}(\mathbb{R})$ means that

$$\int_{-\infty}^{\infty} |f(x)|^{p} dx$$
is finite. (Think $p = 1 \text{ or } 2$.)
Well, if $f \in L^{2}(\mathbb{R})$, not obvious that

$$\hat{f}(\gamma) = \int_{-\infty}^{\infty} f(x)e^{-2\pi i\gamma x} dx$$

$$f(x) = \int_{-\infty}^{\infty} f(x)e^{-2\pi i\gamma x} dx$$

is finite for all $\gamma \in \mathbb{R}$, i.e., not clear that the Fourier transform \hat{f} exists!

2. If \hat{f} does actually exist, to what extent can we recover f from \hat{f} ?

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Goal (that we won't quite reach)

Theorem (Inversion Theorem for the Fourier Transform) If $f \in L^2(\mathbb{R})$ and $\hat{f}(\gamma)$ is defined by

$$\hat{f}(\gamma) = \int_{-\infty}^{\infty} f(x) e^{-2\pi i \gamma x} dx,$$

then f can be recovered from $\hat{f}(\gamma)$ by the inverse Fourier transform

$$f(x) = \int_{-\infty}^{\infty} e^{2\pi i x \gamma} d\gamma.$$

We'll only consider the case where $f \in S(\mathbb{R})$, where we can do everything very concretely; the full L^2 theorem requires more abstraction.

Comparing Fourier series

Compare Inversion Theorem for Fourier Series: If $f \in L^2(S^1)$ and

$$\hat{f}(n) = \int_0^1 f(x) e^{-2\pi i n x},$$

then

$$f(x) = \sum_{n \in \mathbb{Z}} \hat{f}(n) e^{2\pi i n x}$$

in the L^2 metric.

Helpful to keep in mind:

	Function variable	Transform variable
Fourier series	$x \in S^1$	$\textit{n} \in \mathbb{Z}$
Fourier transform	$x \in \mathbb{R}$	$\gamma \in \mathbb{R}$

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬる

The plan

Use same kinds of tools as in Ch. 8:

- Convolution
- Dirac kernel G_t
- Limit of $f * G_t$ is f

Then we show that inversion theorem works for G_t , and leverage that to show that inversion theorem works in general.

(日) (四) (日) (日) (日)