1. (15 points) Let \mathcal{H} be a Hilbert space, and let $\{u_n \mid n \in \mathbb{N}\}$ be a set of nonzero vectors in \mathcal{H} .

- (a) Define what it means for $\{u_n \mid n \in \mathbb{N}\}$ to be an orthogonal set.
- (b) Define what it means for $\{u_n \mid n \in \mathbb{N}\}$ to be an orthogonal basis.

(a) <n; n;>=) fir all i=) (b) { h, InEN) orthogset and. $\forall f \in \mathcal{A}, f = \mathcal{Z} = \mathcal{A}(h) u_n = \mathcal{Z} = \mathcal{A}(h, u_n)$

- **2.** (15 points)
- (a) For f in the Schwartz space $\mathcal{S}(\mathbb{R})$, define the Fourier transform $\hat{f}(\mathbf{v})$ of f.
- (b) State the Fourier inversion theorem in the case of $f \in \mathcal{S}(\mathbb{R})$. (In other words, what do you need to do to \hat{f} to recover f?)

(b)
$$f(x) = \int_{-\infty}^{\infty} f(x) e^{-2\pi i \sigma x} dx FT$$

(b) $f(x) = \int_{-\infty}^{\infty} f(x) e^{2\pi i \sigma x} d\sigma$
 $F(x) = \int_{-\infty}^{\infty} F(x) e^{2\pi i \sigma x} d\sigma$
 $T_{NV} FT$
 $A(t', \hat{T}(y) = f(-x))$

10. (15 points) **PROOF QUESTION.** Suppose $f, g \in L^2(S^1)$. Prove that

$$\begin{aligned} \left|\int_{0}^{1} f(x)\overline{g(x)} dx\right|^{2} &\leq \left(\sum_{n \in \mathbb{Z}} |\widehat{f}(n)|^{2}\right) \left(\int_{0}^{1} |g(x)|^{2} dx\right). \\ \text{L(HS'.} \quad \left|\langle\langle\widehat{f},\widehat{f},\widehat{f}\rangle\right|^{2} \quad by \text{ defn} \\ \text{PHS'.} \quad \left|\langle\langle\widehat{f},\widehat{f},\widehat{f}\rangle\right|^{2} \text{ by defn} \\ &\sum_{n \in \mathbb{Z}} |\widehat{f}(n)|^{2} = ||\widehat{f}||^{2} \quad \text{Parseval} \\ &\sum_{n \in \mathbb{Z}} |\widehat{f}(n)|^{2} = ||\widehat{f}||^{2} \quad \text{Parseval} \\ \text{Cauchy-Schwarz'.} \\ |\langle\widehat{f},g\rangle| &\leq ||\widehat{f}|| ||g|| \\ &So \quad |\langle\widehat{f},g\rangle|^{2} \leq ||\widehat{f}||^{2} ||\widehat{g}||^{2} \quad (0)$$

13. (15 points) PROOF QUESTION. Suppose
$$f \in D^{2}(x)$$
, and $et g(x) = f(-x)$.
Prove that for $n \in \mathbb{Z}$, $g(n) = \hat{f}(-n)$. (Remember that \hat{f} and \hat{g} here refer to Fourier series coefficients, and not the Fourier transform on \mathbb{R} .
 $f = \frac{f(-x)}{g(x)} = \frac{f(-x)}{g(x)} = \frac{f(-x)}{g(x)} = \frac{f(-x)}{g(x)}$.
 $f(x) = \frac{f(-x)}{g(x)} = \frac{f(-x)}{g(x)} = \frac{f(-x)}{g(x)}$.
 $f(x) = \frac{f(-x)}{g(x)} = \frac{f(-x)}{g(x)} = \frac{f(-x)}{g(x)}$.
 $f(x) = \frac{f(-x)}{g(x)} = \frac{f(-x)}{g(x)}$.

12.3.7 $\frac{WTS}{q(x)} = e^{-\pi x^2} = \widehat{g(a)} = e^{-\pi x^2}$ $G_{t}(x) = \frac{1}{4} e^{-1} \left(\frac{\xi}{2} \right)^{2} + e^{-1} \left(\frac{\xi}{2} \right)^{2}$ $WTS \widehat{G}_{+} = G_{+}$ (d WTSolve F'(x)=2#8 F(8) 5 Solve #= -2Try] Sboth,+($\frac{1}{2}a_{y} = -2\pi \sigma d\sigma \int \frac{\text{Solve for } C}{\sqrt{F(0)}}$ e-TTX2 -48 子ピーの代 $t(t_{rom p,271})$ $\frac{1}{6}$ $\mathcal{Z}(\frac{x}{b})$ f(bx)