Name:

\qquad Final exam

This test consists of 14 questions on 12 pages, totalling 200 points. You are not allowed to use books, notes, or calculators. Unless otherwise stated, you may take as given anything which has been proven in class, in the homework, or in the reading. You are also given the information in several tables on this page and the next.

Problem	Points	Score
1	14	
2	14	
3	14	
4	13	
5	13	
6	13	
7	13	
8	13	
9	13	
10	16	
11	16	
12	16	
13	16	
14	16	
Total	200	

You may freely use the following formulas:

$$
\begin{aligned}
\int \overline{e_{n}(x)} d x & =-\frac{e_{-n}(x)}{2 \pi i n}+C \\
\int x \overline{e_{n}(x)} d x & =-\frac{x e_{-n}(x)}{2 \pi i n}-\frac{e_{-n}(x)}{(2 \pi i n)^{2}}+C \\
\int x^{2} \overline{e_{n}(x)} d x & =-\frac{x^{2} e_{-n}(x)}{2 \pi i n}-\frac{2 x e_{-n}(x)}{(2 \pi i n)^{2}}-\frac{2 e_{-n}(x)}{(2 \pi i n)^{3}}+C \\
\int_{0}^{1} e_{n}(x) \overline{e_{k}(x)} d x & = \begin{cases}1 & \text { if } n=k \\
0 & \text { otherwise }\end{cases} \\
e_{n}(k)=e_{-n}(k) & =1 \quad e_{n}\left(\frac{1}{2}\right)=e_{-n}\left(\frac{1}{2}\right)=(-1)^{n} \\
e_{n}\left(\frac{1}{4}\right)=e_{-n}\left(-\frac{1}{4}\right) & =i^{n} \quad e_{n}\left(-\frac{1}{4}\right)=e_{-n}\left(\frac{1}{4}\right)=(-i)^{n}
\end{aligned}
$$

1. (14 points) Let f be in $L^{2}\left(S^{1}\right)$, and N be a positive integer.
(a) Define $f_{N}(x)$, the N th Fourier polynomial of f.
(b) Define what it means for $p(x)$ to be a trigonometric polynomial of degree N.
(c) State the Best Approximation Theorem. (I.e., what is the most notable property of the N th Fourier polynomial of f ?)

2. (14 points) Suppose $f, g \in C^{0}\left(S^{1}\right)$.
(a) Define the convolution $(f * g)(x)$.
(b) What is the most notable property of the Fourier coefficients of $f * g$? State the formula precisely.

$$
\text { (b) } \widehat{f_{* g}}(n)=\hat{f}(n) \hat{g}(n)
$$

3. (14 points) Calculate the Fourier coefficients $f(n)$ of the function $f: S^{1} \rightarrow \mathbf{C}$ given for $-\frac{1}{2} \leq x \leq \frac{1}{2}$ by
$f(x)= \begin{cases}1 & \text { if }-\frac{1}{4} \leq x \leq \frac{1}{4} \\ 0 & \text { otherwise } .\end{cases}$
Show all your work, and do not simplify your final

$$
\frac{f(0)=\int_{-1 / 4}^{1 / 4} 1 d x=\frac{1}{2}}{0 \neq 0}
$$

$$
\begin{aligned}
\hat{f}(n) & =\int_{-1 / 2}^{1 / 2} f(x) \overline{e_{n}(x)} d x=\left\langle t, e_{n}\right\rangle \\
& =\int_{-1 / 4}^{1 / 4} e^{-2 \pi i n x} d x \\
& \left.=\frac{e^{-2 \pi i n x}}{-2 \pi i n}\right]_{-1 / 4}^{1 / 4} \\
& =\frac{1}{-2 \pi i n}\left(e_{-n}\left(\frac{1}{4}\right)^{-\frac{\pi}{2} i}\right. \\
& \left.=\frac{1}{-2 \pi i n}\left((-i)^{n}-(+i)^{n}\right) \quad e^{-2 \pi i}\right)
\end{aligned}
$$

For questions 4-9, you are given a statement. If the statement is true, you need only write "True", though a justification may earn you partial credit if the correct answer is "False". If the statement is false, write "False", and justify your answer as specifically as possible. (Do not just write " T " or " F ", as you may not receive any credit; write out the entire word "True" or "False".)
4. (13 points) TRUE/FALSE. It is possible that there exists a sequence a_{n} in \mathbf{R} and a continuous function $f: \mathbf{R} \rightarrow \mathbf{C}$ such that $\lim _{n \rightarrow \infty} a_{n}=5, f(5)=13$, and $\lim _{n \rightarrow \infty} f\left(a_{n}\right)=7$.

$$
\xrightarrow{F} \lim _{n \rightarrow \infty} F\left(\sigma_{n}\right)=f\left(\lim _{n \rightarrow \infty} a_{n}\right)
$$

5. (13 points) TRUE/FALSE. If $f:[1,5] \rightarrow \mathbf{C}$ is a Riemann integrable function, then it must be the case that f is continuous.

True
Inv $\operatorname{Thm}_{m} f t L^{2}\left(s^{\prime}\right) \rightarrow f_{N} \rightarrow f \quad i n L^{2}$
9. (13 points) TRUE/FALSE. Let f_{n} be a sequence of continuous functions on $[0,1]$, and suppose that $f:[0,1] \rightarrow \mathbf{C}$ is a function such that $\lim _{n \rightarrow \infty} f_{n}(x)=f(x)$ for all $x \in[0,1]$. Then
it must be the case that f is continuous.
False

$$
\begin{aligned}
& f_{r}(x)=x^{r} \\
& f(x)=\left\{\begin{array}{cc}
0 & 0 \leq x<1 \\
1 & x=1
\end{array}\right.
\end{aligned}
$$

$f_{n} \rightarrow t$ ptwiss, f_{n} (ran), f not cont.

$$
6 \mathrm{NOs}
$$

10. (16 points) PROOF QUESTION. Supp e $f \in C^{3}\left(S^{1}\right)$. Prove that though it is not necessary for this problem.)

$$
\begin{array}{ll}
B / C \in \in C^{3}\left(S^{\prime}\right), \exists k \text { st. } & |\bar{f}(n)| \leqslant \frac{k}{h P} \\
& \text { for } n \neq 0 .
\end{array}
$$

So, for $n \neq 0$,

$$
\begin{aligned}
& |(2 \pi n) F(n)|=|2 \pi n||\hat{f}(n)| \\
& \leqslant|2 \pi n| \frac{K}{|n|^{3}}=\frac{2 \pi k}{|n|^{2}} \\
& \sum_{n \neq 0} \frac{1}{\left.\ln \right|^{2}} \text { cons byp-series }(p=2>1)
\end{aligned}
$$

So $\sum_{n \in \mathbb{Z}} 2 \pi n f(n)$ cones abs by Comprerisor.

$$
\text { Ch. } 4
$$

11. (16 points) PROOF QUESTION. For $k=0$ and $k=1$, define $f_{k}: S^{1} \rightarrow \mathbf{C}$ by

$$
f_{k}(x)=\sum_{n \neq 0}\left(\frac{(2 \pi i n)^{k}}{n^{3}}\right) e_{n}(x) . \quad f_{0}
$$

(a) Prove that if either $k=0$ or $k=1$, then $f_{k}(x) \underbrace{\text { converges absolutely and uniformly on }}$ test
(b) Prove that $f_{0}(x)$ is differentiable and $f_{0}^{\prime}(x)=f_{1}(x)$. Be precise about the hypotheses
(a)

$$
\text { So } \sum_{n \neq 0} \frac{(2 \pi i n)^{k}}{h^{3}} e_{n}(x) \text { cons absdnivit }
$$

(b) we rue

$$
\begin{gathered}
\text { b) We ae } \frac{d}{n^{\prime} 70}\left(\frac{1}{n^{3}} e_{n}(x)\right)=\frac{d}{d x}\left(\frac{1}{n^{3}} e^{2 \pi i n x}\right) \\
=\frac{2 \pi i n}{n^{3}} e^{2 \pi i n x} t_{1}
\end{gathered}
$$

so, $b<t_{0}, t$, convabs $e^{h^{3}}$ unit, term-by-term works, and $\frac{d}{d x}(\underbrace{\sum_{n=0} \frac{1}{n^{3}} e_{n}(x)}_{t_{0}})=\frac{\sum_{1 \rightarrow 0} \frac{2 \pi i n}{n^{3}} c_{n}(t)}{f_{1}}$

$$
\begin{aligned}
& \left.\left|\frac{(2 \pi i n)^{k}}{n^{3}} c_{n}(x)\right|=\frac{|2 \pi i n|^{k}}{|n|^{3}} \ln _{n}(x) \right\rvert\, \\
& n \neq 0 \quad=\frac{2 \pi|n|^{2}}{|n|^{3}} \leq \frac{2 \pi}{|n|^{2}}=M_{n} \\
& \sum_{n \neq 0} M_{n}=\sum_{n \neq 0} \frac{2 \pi}{\mid n 1^{2}} \text { tors by p-series }(p=2>1)
\end{aligned}
$$

$$
f \in C^{\prime}\left(s^{\prime}\right)
$$

12. (16 points) PROOF QUESTION. Prove that for $n \in \mathbf{Z}$, we have that

$$
\begin{aligned}
\left(e_{n}^{*} t\right)(x) & =\int_{0}^{1} e_{n}(x-t) f(t) d t \quad d t f_{n} \\
& =\int_{n}^{1} e^{2 \pi i n}(x-t) f(t) d t \\
& =\int_{0}^{1} e^{2 \pi i n x} e^{-2 \pi i n t} f(t) A t \\
& =e^{2 \pi i n x} \int_{0}^{1} f(t) \frac{e^{-2 \pi i n t}}{\overline{e_{n}(t)}} d t \\
& =e^{2 \pi i n x}\left\langle t, e_{n}\right\rangle=e^{2 \pi i n x} \hat{f}(n)
\end{aligned}
$$

$$
(t \in \mathbb{R})
$$

13. (16 points) PROOF QUESTION. For $f \in L^{2}\left(S^{1}\right)$, define $u: S^{1} \times(0,+\infty) \rightarrow \mathbf{C}$ and
$h:(0,+\infty) \rightarrow \mathbf{C}$ by
where the norm $\|u(x, t)\|$ is computed in $L_{x}^{2}\left(S^{1}\right)$, holding t constant. M-とっst
(a) Use Parseval to pr
(b) Prove that $h(+$ co
(a)

$$
\begin{aligned}
& \left.\|n(x, t)\|^{2}=\sum_{n \in e}| | \frac{1}{t^{2}+1}|f(n)|^{2} \quad \text { (Parser } \mid\right) \\
& \text { tr series in } t
\end{aligned}
$$

$$
\begin{aligned}
& \operatorname{rops}_{\text {ont }}\left(\text { woe }_{x}:|f(x)|=\mid \int_{0}^{1} f(x) e \bar{e} x\right) A_{x} \mid \\
& \leq \int_{0}^{1}\left|f(x) e_{-1}(x) d x\right|=\int_{0}^{1} \mid f(x) d x=1
\end{aligned}
$$

So

$$
\left|\frac{1}{t^{2}+1} f(n)\right|^{2} \leq|\hat{f}(n)|^{2}=M_{n}
$$

$$
\sum_{n \in \mathbb{Z}} M_{n}=\sum_{n \in \mathbb{Z}}|f(n)|^{2}=\|f\|^{2} \text { cons by Parsival }
$$

$W(t)=\sum_{n \in Z}^{\text {So }}\left|\frac{1}{\tau^{2}+1} \hat{f}(n)\right|^{2} \begin{gathered}\text { cuavs abshennit } \\ \text { by } M-t e s t\end{gathered}$
Ench $\left|\frac{1}{\tau^{2}+1} \hat{f}(n)\right|^{2}$ is cont.
So, since $\sum_{n \in \mathbb{D}}\left|\frac{1}{t^{2}+1} \tilde{f}(n)\right|^{2} \frac{\text { corvs }}{\frac{(n i t)}{2}}$ anit to $h(t), h(t)$ is also coht.

