Math 131B, Fall 2022
Name: \qquad
Exam 3
This test consists of 8 questions on 6 pages, totalling 100 points. You are not allowed to use books, notes, or calculators. Unless otherwise stated, you may take as given anything that has been proven in class, in the homework, or in the reading.

1. (10 points) Let $K_{n}:\left[-\frac{1}{2}, \frac{1}{2}\right] \rightarrow \mathbf{R}$ be a sequence of nonnegative continuous functions. Define what it means for K_{n} to be a Dirac kernel on S^{1}. In other words, list the two key properties of K_{n} (besides $\left.K_{n}(x) \geq 0\right)$ that make K_{n} into a Dirac kernel, both having to do with the values of certain integrals of K_{n}. (If you can't remember the key properties precisely, for partial credit, try drawing a picture of the graph (s) of K_{n}.)

$$
\begin{aligned}
& \text { le., the portion of the integral } \\
& \text { outside a delta neighborhood of } 0 \\
& \text { goes to } 0 \text { as } \mathrm{n}-\mathrm{r} \text { infinity. (So } \\
& \text { portion inside delta-nbd goes to } \\
& \text { 1.) }
\end{aligned}
$$

of the integral

In questions $2-4$, you are given a statement. If the statement is true, you need only write "True", though a justification may earn you partial credit if the correct answer is "False". If the statement is false, write "False", and justify your answer as specifically as possible. (Do not just write "T" or "F", as you may not receive any credit; write out the entire word "True" or "False".)
2. (12 points) TRUE/FALSE: Suppose $h: S^{1} \rightarrow \mathbf{C}$ is continuous and $K_{n}(x)$ is a Dirac kernel. Then it must be the case that $h * K_{n}$ converges uniformly to h on S^{1} as $n \rightarrow \infty$.

3. (12 points) TRUE/FALSE: It is possible that there exist some $f \in L^{2}\left(S^{1}\right)$ and some $c_{-5}, \ldots, c_{0}, \ldots, c_{5} \in \mathbf{C}$ such that

4. (12 points) TRUE/FALSE: It is possible that there exists some $f \in C^{0}\left(S^{1}\right)$ such that $\sum_{n \in \mathbf{Z}}|\hat{f}(n)|^{2}=7$ and $\int_{0}^{1}|f(x)|^{2} d x=8$.

$$
\text { Can't have } 7=8
$$

5. (13 points) PROOF QUESTION. Let V be an inner product space and let $T: V \rightarrow V$ be a function such that T is linear, or in other words, such that for all $f, g \in V$ and $a, b \in \mathbf{C}$, we have

$$
T(a f+b g)=a T(f)+b T(g)
$$

Also, let f_{n} be a sequence f in V.
(a) State the sequential definition of what it means for $T: V \rightarrow V$ to be continuous on V.
(b) Define $\sum_{n=1}^{\infty} f_{n}$ as the limit of finite sums.
(c) Now suppose T is continuous on V and $\sum_{n=1}^{\infty} f_{n}$ converges in V. Prove that

$$
T\left(\sum_{n=1}^{\infty} f_{n}\right)=\sum_{n=1}^{\infty} T\left(f_{n}\right)
$$

Make sure it is clear exactly why each step of your proof is justified.

$$
\begin{aligned}
& \text { (a) If } \lim _{n \rightarrow \infty} f_{n}=t \text {, then } \lim _{n \rightarrow \infty} T\left(f_{n}\right)=T(f) \\
& \text { Ie, } T\left(\lim _{n \rightarrow \infty}=\lim _{n \rightarrow \infty} T(\right. \\
& \text { (b) } \sum_{n=1}^{\infty} f_{n}=\lim _{N \rightarrow \infty} \sum_{n=1}^{N} f_{n} \\
& \text { (c) } T\left(\sum_{n=1}^{\infty} f_{n}\right)=T\left(\lim _{n \rightarrow \infty} \sum_{n=1}^{N} f_{n}\right) \\
& \binom{b y}{(b)} \\
& =\lim _{n \rightarrow \infty} T\left(\sum_{n=1}^{n} f_{n}\right) \\
& \binom{b x(a),}{T \in \infty} \\
& =\lim _{n \rightarrow \infty} \sum_{n=1}^{N} T\left(F_{n}\right)= \\
& \sum_{n=1}^{\infty} T\left(t_{n}\right) \\
& (2)
\end{aligned}
$$

6. (13 points) PROOF QUESTION. Let $f: S^{1} \rightarrow \mathbf{C}$ be continuous, and recall that $e_{n}(x)=e^{2 \pi i n x}$. Use the definition of convolution to prove that

$$
\begin{aligned}
\left(e_{n} * f\right)(x) & =\int_{0}^{1} e_{n}(x-t) f(t) d t \\
& =\int_{0}^{1} e^{2 \pi i n(x-T)} f(t) d t \\
& =\int_{0}^{1} e^{2 \pi i n x} e^{-2 \pi i n t} f(t) d t \\
& =e^{2 \pi i n x} \int_{0}^{1} f(t) \overline{e^{2 \pi i n t}} d t \\
& =e_{n}(x) \int_{0}^{1} f(t) \overline{e_{n}(t)} d t \\
& =e_{n}(x) \tilde{F}(n)
\end{aligned}
$$

7. (14 points) PROOF QUESTION. Let $\left\{e_{n} \mid n \in \mathbf{Z}\right\}$ be the usual basis for $L^{2}\left(S^{1}\right)$ and suppose $a_{n} \in \mathbf{C}$.
(a) State the Hilbert Space Absolute Convergence Theorem for $\sum_{n \in \mathbf{Z}} a_{n} e_{n}$.
(b) Now suppose that for all $n \in \mathbf{Z}$,

$$
\left|a_{n}\right| \leq \frac{7}{|n|+2}
$$

Prove that $\sum_{n \in \mathbf{Z}} a_{n} e_{n}$ converges (in the inner product metric) to some $f \in L^{2}\left(S^{1}\right)$.

8. (14 points) PROOF QUESTION. Let $k: S^{1} \rightarrow \mathbf{R}$ be a nonnegative continuous function such that

$$
\int_{0}^{1} k(t) d t=1
$$

(a) Define what it means fr e $f: S^{1} \rightarrow \mathbf{C}$ to be uniformly continuous. (For partial credit, don't worry about the "uniforming" part.)
(b) Prove that for every $\epsilon>0$, there exists some $\delta>0$ such that for any x such that $|x|<\delta$, we have that

This is the red box, but with ($t+x$) and t instead of x and y

