
Absolute/conditional convergence and rearrangements
Math 131A

In these notes, we examine the question: When does the order of summation affect the
convergence or divergence of a series? For convenience, we assume that (after renumbering)
the domain of every sequence is N.

Definition 1. A rearrangement of a sequence (an) is a sequence (bn) such that

bn = aσ(n) (1)

for some bijection σ : N → N. Similarly, if (bn) is a rearrangment of (an), we also say that∑
bn is a rearrangement of

∑
an.

Theorem 2. Let (an) be a sequence such that an ≥ 0 for n ∈ N, and let (bn) be a rear-

rangement of (an). If
∑

an converges, then
∑

bn converges.

Proof. Suppose bn = aσ(n) for some bijection σ : N → N. By the Cauchy Criterion, we
know that for any ϵ > 0, there exists some Na(ϵ) such that if m > k > Na(ϵ), then∣∣∣∣∣

m∑
n=k

an

∣∣∣∣∣ < ϵ. (2)

So now, for ϵ > 0, let
S(ϵ) = {n ∈ N | σ(n) ≤ Na(ϵ)} . (3)

Since σ is a bijection, S(ϵ) is finite, so we may define N(ϵ) = maxS(ϵ). Now suppose
m > k > N(ϵ). Let

T = {σ(n) | k ≤ n ≤ m} , (4)

Since σ is a bijection, it maps the indices k, k+1, . . . ,m injectively into T , which is contained
(possibly properly) in the set {n′ | minT ≤ n′ ≤ maxT}. Therefore, since the an are all
nonnegative, we see that

m∑
n=k

bn =

m∑
n=k

aσ(n) ≤
maxT∑

n′=minT

an′ . (5)

However, since n > maxS(ϵ) for k ≤ n ≤ m, by definition of S(ϵ), we see that

Na(ϵ) < minT ≤ maxT. (6)

Therefore, by (2),
m∑

n=k

bn ≤
maxT∑

n′=minT

an′ < ϵ. (7)

The theorem follows by the Cauchy Criterion.

Corollary 3. Any rearrangement
∑

bn of an absolutely convergent series
∑

an also con-

verges absolutely.
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Proof. If
∑

an converges absolutely, then
∑

|bn| converges because it is a rearrangement

of the convergent nonnegative series
∑

|an|. Therefore,
∑

bn converges absolutely.

If
∑

an converges conditionally, then rearrangements are completely unpredictable. To

be precise, we have the following remarkable result, due to Riemann.

Theorem 4 (Riemann rearrangement theorem). If
∑

an converges conditionally, then for

any L ∈ R ∪ {+∞,−∞}, there is a rearrangement of
∑

an that converges to L.

Sketch of proof. For simplicity, assume an is never 0. Let
∑

bn contain the positive terms

of
∑

an, and let
∑

cn contain the negative terms. If both
∑

bn and
∑

cn converge, we

would have ∑
|an| =

∑
bn +

∣∣∣∑ cn

∣∣∣ , (8)

and
∑

an would converge absolutely. Furthermore, if
∑

bn = +∞ and
∑

cn is finite,

then
∑

an would diverge, and similarly for the case where
∑

bn is finite and
∑

cn = −∞.

Therefore, it must be that
∑

bn = +∞ and
∑

cn = −∞.

Note that since
∑

an converges conditionally, an → 0, which means that bn, cn → 0. In

particular, every subset of the bn or cn has a largest size element (i.e., element with largest
possible absolute value). So now rearrange the bn and cn so they are both in decreasing
order of size, and without loss of generality, assume (by symmetry) that L ≥ 0. If L < +∞,

we arrange
∑

an as follows:

1. Begin with the minimum number of positive terms bn required to achieve a sum greater
than L.

2. Then add the minimum number of negative terms cn required to bring the partial
sum back down to less than L.

3. Keep alternating: Add positive terms until we “overshoot” L, add negative terms
until we “undershoot” L, and so on.

It can then be shown that this arrangement has a sum that converges to L.

Similarly, if L = +∞, we arrange
∑

an as follows:

1. Begin with the minimum number of positive terms bn required to achieve a sum greater
than |c1|+ 1.

2. Then add the negative term c1, giving a total greater than 1.

3. Keep alternating: Add new positive terms to achieve an additional sum greater than
|c2|+ 1, then add c2; add a sum greater than |c3|+ 1, then add c3; and so on.

Again, it can then be shown that the sum of this arrangement approaches +∞.
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