Sample outline for problem set 01 Math 131A

Definitions: The definitions you should copy from the text are: (Sec. 3, starting Defn. 3.3) absolute value, distance between a and b. (Sec. 4) maximum, minimum, closed interval, open interval, half-open interval, upper bound, bounded above, lower bound, bounded below, bounded, supremum, infimum. Note that you do not need to copy theorems from the text for the outline; in fact, I prefer that you don't, though I won't take off points for it.

Below: $\mathbf{A}=$ Assume, $\mathbf{C}=$ Conclude, $\mathbf{A B C}=$ Assume By way of Contradiction.

1. A. $a, b, c \in \mathbf{R}$.
A. $a \leq b$ and $b<c$ (i.e., $b \leq c$ and $b \neq c$).
(stuff)
C. $a<c$ (i.e., $a \leq c$ and $a \neq c$).
2. A. For all $x<a$, we have $x \leq b$.

ABC. $b<a$.
(stuff)
Contradiction.
3. Goal: For each of sets (e), (h), (k), (l) (the letter ℓ), (v), from Ex. 4.1, list 3 different upper bounds and the sup of the set, or write NOT BOUNDED ABOVE.
4. Guess: $\sup S=$?? (say U)

Part 1: WTS U is an upper bound for S.
A. $x \in S$.
(stuff)
C. $x \leq U$.

Part 2: WTS U is the least upper bound of S. I.e., we WTS that if $v<U$, then v is not an upper bound for S.
A. $v<U$.
(stuff)
So there exists some $x \in S$ such that $x>v$.
C. v is not an upper bound for S.
5. Guess: $\inf S=$?? (say L)

Part 1: WTS L is a lower bound for S.
A. $x \in S$.
(stuff)
C. $x \geq L$.

Part 2: WTS L is the greatest lower bound of S. I.e., we WTS that if $L<\ell$, then ℓ is not a lower bound for S.
A. $L<\ell$.
(stuff)
So there exists some $x \in S$ such that $x<\ell$.
C. ℓ is not a lower bound for S.
6. Guess: $\sup S=$?? (say U)

Part 1: WTS U is an upper bound for S.
A. $x \in S$.
(stuff)
C. $x \leq U$.

Part 2: WTS U is the least upper bound of S. I.e., we WTS that if $v<U$, then v is not an upper bound for S.
A. $v<U$.
(stuff)
So there exists some $x \in S$ such that $x>v$.
C. v is not an upper bound for S.
(Note that the outlines for 4 and 6 are basically the same.)
7. Negations are:

- There exists $\epsilon>0$, such that for every $s \in S$, we have $u-s \geq \epsilon$.
- $u \neq \sup S$.
A. There exists $\epsilon>0$, such that for every $s \in S$, we have $u-s \geq \epsilon$.
(stuff)
C. $u \neq \sup S$.

Converse switches A. and C.

