Sample outline for problem set 01 Math 131A

Definitions: The definitions you should copy from the text are: (Sec. 3, starting Defn. 3.3) absolute value, distance between a and b. (Sec. 4) maximum, minimum, closed interval, open interval, half-open interval, upper bound, bounded above, lower bound, bounded below, bounded, supremum, infimum. Note that you do not need to copy theorems from the text for the outline; in fact, I prefer that you don't, though I won't take off points for it.

Below: $\mathbf{A} = \text{Assume}, \mathbf{C} = \text{Conclude}, \mathbf{ABC} = \text{Assume By way of Contradiction}.$

A. a, b, c ∈ R.
A. a ≤ b and b < c (i.e., b ≤ c and b ≠ c). (stuff)
C. a < c (i.e., a ≤ c and a ≠ c).
A. For all x < a, we have x ≤ b.
ABC. b < a. (stuff)

Contradiction.

3. Goal: For each of sets (e), (h), (k), (l) (the letter ℓ), (v), from Ex. 4.1, list 3 different upper bounds and the sup of the set, or write NOT BOUNDED ABOVE.

4. Guess: $\sup S = ??$ (say U)

Part 1: WTS U is an upper bound for S. A. $x \in S$. (stuff) C. $x \leq U$.

Part 2: WTS U is the least upper bound of S. I.e., we WTS that if v < U, then v is not an upper bound for S.

A. v < U. (stuff) So there exists some $x \in S$ such that x > v. **C.** v is not an upper bound for S.

5. Guess: inf S = ?? (say L)

Part 1: WTS L is a lower bound for S. A. $x \in S$. (stuff) C. $x \ge L$.

Part 2: WTS L is the greatest lower bound of S. I.e., we WTS that if $L < \ell$, then ℓ is not a lower bound for S.

A. $L < \ell$. (stuff) So there exists some $x \in S$ such that $x < \ell$. C. ℓ is not a lower bound for S. **6.** Guess: $\sup S = ??$ (say U)

Part 1: WTS U is an upper bound for S. A. $x \in S$. (stuff) C. $x \leq U$.

Part 2: WTS U is the least upper bound of S. I.e., we WTS that if v < U, then v is not an upper bound for S.

A. v < U. (stuff) So there exists some $x \in S$ such that x > v. **C**. v is not an upper bound for S.

(Note that the outlines for 4 and 6 are basically the same.)

7. Negations are:

- There exists $\epsilon > 0$, such that for every $s \in S$, we have $u s \ge \epsilon$.
- $u \neq \sup S$.

A. There exists $\epsilon > 0$, such that for every $s \in S$, we have $u - s \ge \epsilon$. (stuff) **C**. $u \ne \sup S$.

Converse switches \mathbf{A} . and \mathbf{C} .