Sample Final Exam Math 131A, Spring 2024

In this exam, you may take the following as given:
Theorem: For any $c \in \mathbf{R}$, there exists a sequence x_{n} in \mathbf{Q} and a sequence y_{n} in $\mathbf{R} \backslash \mathbf{Q}$ (i.e., each x_{n} is rational and each y_{n} is irrational) such that $\lim x_{n}=c$ and $\lim y_{n}=c$.

1. (16 points) State both Fundamental Theorems of Calculus, one of which has to do with the derivative of an integral, and the other of which has to do with the integral of a derivative. For simplicity, you may assume that all functions involved in your statements are continuous.
2. (15 points)
(a) Let $\left(a_{n}\right)$ be a sequence. Define what it means to be a subsequence of $\left(a_{n}\right)$.
(b) State the Bolzano-Weierstrass Theorem.
3. (15 points) Let $a_{n}=\frac{n\left(3^{1 / n}\right)}{5 n^{2}+7}$. Determine if the series $\sum_{n=1}^{\infty} a_{n}=\sum_{n=1}^{\infty} \frac{n\left(3^{1 / n}\right)}{5 n^{2}+7}$ converges or diverges, and prove your answer.

For questions $4-9$, you are given a statement. If the statement is true, you need only write "True", though a justification may earn you partial credit if the correct answer is "False". If the statement is false, write "False", and justify your answer as specifically as possible. (Do not just write "T" or "F", as you may not receive any credit; write out the entire word "True" or "False".)
4. (13 points) TRUE/FALSE: Let $f_{n}:[0,1] \rightarrow \mathbf{R}$ be a sequence of continuous functions with domain $[0,1]$, and suppose that f_{n} converges to $f:[0,1] \rightarrow \mathbf{R}$ pointwise. Then it must be the case that f is continuous on $[0,1]$.
5. (13 points) TRUE/FALSE: Let S be a nonempty bounded subset of R. Suppose $u \in \mathbf{R}$ satisfies the conditions that for all $s \in S, s \leq u$; and that if $s \leq v$ for all $s \in S$, then $u \leq v$. Then it is possible that $u \notin S$.
6. (13 points) TRUE/FALSE: If $g: \mathbf{R} \rightarrow \mathbf{R}$ is given by

$$
g(x)= \begin{cases}\cos \left(\frac{1}{x}\right) & \text { if } x \neq 0 \\ -1 & \text { if } x=0\end{cases}
$$

then g is continuous at $x=0$.
7. (13 points) TRUE/FALSE: Suppose $h:[-3,5] \rightarrow \mathbf{R}$ is a function such that if $a \in$ $[-3,5]$, then $\lim _{x \rightarrow a} \frac{h(x)-h(a)}{x-a}$ exists. Then it must be the case that $\int_{-2}^{4} h(x) d x$ exists.
8. (13 points) TRUE/FALSE: Let b_{n} be a sequence such that $5 \leq b_{n} \leq 8$ for all $n \in \mathbf{N}$. Then it must be the case that $\lim _{n \rightarrow \infty} b_{n}$ exists.
9. (13 points) TRUE/FALSE: Let $f: \mathbf{R} \rightarrow \mathbf{R}$ be a function such that $\lim _{x \rightarrow 4} f(x)=-7$. Then it is possible that there exists a sequence a_{n} such that $\lim _{n \rightarrow \infty} a_{n}=4, a_{n} \neq 4$ (for all $n \in \mathbf{N})$, and $\lim _{n \rightarrow \infty} f\left(a_{n}\right)=12$.
10. (15 points) PROOF QUESTION. Define $f: \mathbf{R} \rightarrow \mathbf{R}$ by

$$
f(x)= \begin{cases}x^{2} \sin \left(\frac{1}{x^{3}}\right) & \text { if } x \neq 0 \\ 0 & \text { if } x=0\end{cases}
$$

Prove that f is differentiable at 0 .
11. (15 points) PROOF QUESTION. Define $g: \mathbf{R} \rightarrow \mathbf{R}$ by

$$
g(x)= \begin{cases}|x| & \text { if } x \in \mathbf{Q}, \\ 0 & \text { if } x \notin \mathbf{Q} .\end{cases}
$$

Use the $\epsilon-\delta$ definition of continuity to prove that g is continuous at 0 .
12. (15 points) PROOF QUESTION.
(a) State the Mean Value Theorem for a function $f(x)$ on $[a, b]$.
(b) Recall that $\frac{d}{d x}(\sin x)=\cos x$ and $\frac{d}{d x}(\cos x)=-\sin x$. Use the Mean Value Theorem to prove that for any $a, b \in \mathbf{R}, a<b$, we have that

$$
|\sin b-\sin a| \leq|b-a|
$$

13. (15 points) PROOF QUESTION. Let a_{n} be a sequence such that $0 \leq a_{n} \leq \frac{3}{n}$ for all $n \in \mathbf{N}$. Use the definition of the limit of a sequence (and not, for example, the Squeeze Lemma) to prove that $\lim _{n \rightarrow \infty} a_{n}=0$.
14. (16 points) PROOF QUESTION. Let $g(x)$ and $h(x)$ be the power series defined by

$$
g(x)=\sum_{n=0}^{\infty} \frac{x^{2 n}}{(2 n)!}, \quad h(x)=\sum_{n=0}^{\infty} \frac{x^{2 n+1}}{(2 n+1)!}
$$

(a) Use the Ratio Test directly, and not the radius of convergence theorem, to prove that $g(x)$ converges for all $x \in \mathbf{R}$.
(b) Prove that the radius of convergence of $g(x)$ is ∞. (Suggestion: Assume that the radius of convergence of $g(x)$ is a finite number R, and obtain a contradiction.)
(c) Now assume that the radius of convergence of both $g(x)$ and $h(x)$ is ∞. Prove $h^{\prime}(x)=$ $g(x)$, justifying term-by-term operations carefully.

