Sample Final Exam Math 131A, Spring 2024

In this exam, you may take the following as given:

Theorem: For any $c \in \mathbf{R}$, there exists a sequence x_n in \mathbf{Q} and a sequence y_n in $\mathbf{R} \setminus \mathbf{Q}$ (i.e., each x_n is rational and each y_n is irrational) such that $\lim x_n = c$ and $\lim y_n = c$.

1. (16 points) State both Fundamental Theorems of Calculus, one of which has to do with the derivative of an integral, and the other of which has to do with the integral of a derivative. For simplicity, you may assume that all functions involved in your statements are continuous.

2. (15 points)

- (a) Let (a_n) be a sequence. Define what it means to be a subsequence of (a_n) .
- (b) State the Bolzano-Weierstrass Theorem.

3. (15 points) Let
$$a_n = \frac{n(3^{1/n})}{5n^2 + 7}$$
. Determine if the series $\sum_{n=1}^{\infty} a_n = \sum_{n=1}^{\infty} \frac{n(3^{1/n})}{5n^2 + 7}$ converges or diverges, and prove your approximation.

diverges, and prove your answer.

For questions 4–9, you are given a statement. If the statement is true, you need only write "True", though a justification may earn you partial credit if the correct answer is "False". If the statement is false, write "False", and justify your answer **as specifically as possible**. (Do not just write "T" or "F", as you may not receive any credit; write out the entire word "True" or "False".)

4. (13 points) **TRUE/FALSE:** Let $f_n : [0,1] \to \mathbf{R}$ be a sequence of continuous functions with domain [0,1], and suppose that f_n converges to $f : [0,1] \to \mathbf{R}$ pointwise. Then it must be the case that f is continuous on [0,1].

5. (13 points) **TRUE/FALSE:** Let S be a nonempty bounded subset of **R**. Suppose $u \in \mathbf{R}$ satisfies the conditions that for all $s \in S$, $s \leq u$; and that if $s \leq v$ for all $s \in S$, then $u \leq v$. Then it is possible that $u \notin S$.

6. (13 points) **TRUE/FALSE:** If $g : \mathbf{R} \to \mathbf{R}$ is given by

$$g(x) = \begin{cases} \cos\left(\frac{1}{x}\right) & \text{if } x \neq 0, \\ -1 & \text{if } x = 0, \end{cases}$$

then g is continuous at x = 0.

7. (13 points) **TRUE/FALSE:** Suppose $h : [-3,5] \to \mathbf{R}$ is a function such that if $a \in [-3,5]$, then $\lim_{x\to a} \frac{h(x) - h(a)}{x-a}$ exists. Then it must be the case that $\int_{-2}^{4} h(x) dx$ exists.

8. (13 points) **TRUE/FALSE:** Let b_n be a sequence such that $5 \le b_n \le 8$ for all $n \in \mathbb{N}$. Then it must be the case that $\lim_{n \to \infty} b_n$ exists. **9.** (13 points) **TRUE/FALSE:** Let $f : \mathbf{R} \to \mathbf{R}$ be a function such that $\lim_{x\to 4} f(x) = -7$. Then it is possible that there exists a sequence a_n such that $\lim_{n\to\infty} a_n = 4$, $a_n \neq 4$ (for all $n \in \mathbf{N}$), and $\lim_{n\to\infty} f(a_n) = 12$.

10. (15 points) **PROOF QUESTION.** Define $f : \mathbf{R} \to \mathbf{R}$ by

$$f(x) = \begin{cases} x^2 \sin\left(\frac{1}{x^3}\right) & \text{if } x \neq 0, \\ 0 & \text{if } x = 0. \end{cases}$$

Prove that f is differentiable at 0.

11. (15 points) **PROOF QUESTION.** Define $g : \mathbf{R} \to \mathbf{R}$ by

$$g(x) = \begin{cases} |x| & \text{if } x \in \mathbf{Q}, \\ 0 & \text{if } x \notin \mathbf{Q}. \end{cases}$$

Use the ϵ - δ definition of continuity to prove that g is continuous at 0.

12. (15 points) **PROOF QUESTION.**

- (a) State the Mean Value Theorem for a function f(x) on [a, b].
- (b) Recall that $\frac{d}{dx}(\sin x) = \cos x$ and $\frac{d}{dx}(\cos x) = -\sin x$. Use the Mean Value Theorem to prove that for any $a, b \in \mathbf{R}$, a < b, we have that

$$|\sin b - \sin a| \le |b - a|.$$

13. (15 points) **PROOF QUESTION.** Let a_n be a sequence such that $0 \le a_n \le \frac{3}{n}$ for all $n \in \mathbb{N}$. Use the **definition** of the limit of a sequence (and not, for example, the Squeeze Lemma) to prove that $\lim_{n \to \infty} a_n = 0$.

14. (16 points) **PROOF QUESTION.** Let g(x) and h(x) be the power series defined by

$$g(x) = \sum_{n=0}^{\infty} \frac{x^{2n}}{(2n)!}, \qquad \qquad h(x) = \sum_{n=0}^{\infty} \frac{x^{2n+1}}{(2n+1)!}.$$

- (a) Use the Ratio Test directly, and not the radius of convergence theorem, to prove that g(x) converges for all $x \in \mathbf{R}$.
- (b) Prove that the radius of convergence of g(x) is ∞ . (Suggestion: Assume that the radius of convergence of g(x) is a finite number R, and obtain a contradiction.)
- (c) Now assume that the radius of convergence of both g(x) and h(x) is ∞ . Prove h'(x) = g(x), justifying term-by-term operations carefully.