Math 131A, problem set 08 REVISED WITH ALTERNATE PROBLEM 6 Outline due: Wed Apr 11 Completed version due: Mon Apr 13 Last revision due: Mon May 14

Problems to be done but not turned in: 20.13, 20.15, 20.17, 20.19; 28.1, 28.3, 28.5, 28.7, 28.9, 28.11, 28.13, 28.15.

Problems to be turned in: All numbers refer to exercises in Ross.

1. Let $f : \mathbf{R} \to \mathbf{R}$ be defined by

$$f(x) = \begin{cases} 1 & \text{for } x \in \mathbf{Q}, \\ 0 & \text{for } x \notin \mathbf{Q}. \end{cases}$$

Prove that for any $c \in \mathbf{R}$, $\lim_{x \to c} f(x)$ does not exist.

- 2. Let $g : \mathbf{R} \setminus \{3\} \to \mathbf{R}$ be defined by $g(x) = \frac{1}{\sqrt[3]{x-3}}$.
 - (a) Prove that $\lim_{x\to 3^+} g(x) = +\infty$.
 - (b) Prove that $\lim_{x \to \infty} g(x) = 0.$
- 3. Ex. 28.2(d).
- 4. Prove the Local Linearity Lemma:

Local Linearity Lemma. Let *I* be an interval and let $f : I \to \mathbf{R}$ be a function. For $a \in I$, the following are equivalent:

- f is differentiable at a and there exists some $m \in \mathbf{R}$ such that m = f'(a).
- There exists $m \in \mathbf{R}$ and a function $\epsilon(x)$ (the *relative error* in the local linear approximation to f at a) such that

$$f(x) - f(a) = (x - a)(m + \epsilon(x))$$

and $\lim_{x\to a} \epsilon(x) = 0 = \epsilon(a)$ (i.e., $\epsilon(x)$ is continuous at a and $\epsilon(a) = 0$).

(Note that as a consequence, if either condition is true, and therefore, both conditions are true, then m = f'(a).)

5. Let $h : \mathbf{R} \to \mathbf{R}$ be defined by

$$h(x) = \begin{cases} 2x^2 \sin\left(\frac{1}{x}\right) + x & \text{for } x \neq 0, \\ 0 & \text{for } x = 0. \end{cases}$$

- (a) Prove that h'(0) = 1.
- (b) Use the laws of differentiation to calculate h'(a) for $a \neq 0$.
- (c) Prove that for any $\epsilon > 0$, there exists some $a \in \mathbf{R}$ such that $0 < a < \epsilon$ and h'(a) < 0.

(Cont. on next page.)

6. Let $r \in \mathbf{R}$ be fixed, and let $k_r : \mathbf{R} \to \mathbf{R}$ be defined by

$$k_r(x) = \begin{cases} |x|^r & \text{if } x \neq 0, \\ 0 & \text{if } x = 0. \end{cases}$$

- (a) Determine and prove the best possible theorem of the following form:
 - $\lim_{x \to 0} k_r(x) = 0$ if and only if r > ??.

(Note that k_r is continuous at x = 0 if and only if $\lim_{x \to 0} k_r(x) = 0$.)

- (b) Determine and prove the best possible theorem of the following form:
 - $k_r(x)$ is differentiable at 0 if and only if r > ??.