Partitions

Definition (Partition)

A partition P of [a, b] is a finite subset $\{x_0, \ldots, x_n\} \subset [a, b]$ such that $a = x_0 < x_1 < \cdots < x_{n-1} < x_n = b$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Terminology and abbreviations:

• $[x_{i-1}, x_i]$ is *i*th subinterval of *P*

$$\blacktriangleright (\Delta x)_i = x_i - x_{i-1}$$

- *R* is a **refinement** of *P* means $P \subseteq R$
- $P \cup Q$ is the **common refinement** of *P* and *Q*

Upper and lower Riemann sums

Assume $f : [a, b] \rightarrow \mathbf{R}$ bounded.

Definition (Upper and lower Riemann sums) $P = \{x_0, ..., x_n\}$ a partition of [a, b]. Define

$$M(f; P, i) = \sup \{f(x) \mid x \in [x_{i-1}, x_i]\}, m(f; P, i) = \inf \{f(x) \mid x \in [x_{i-1}, x_i]\}.$$

Upper Riemann sum U(f; P) is

$$U(f;P) = \sum_{i=1}^{n} M(f;P,i)(\Delta x)_{i}.$$

Lower Riemann sum L(f; P) is

$$L(f; P) = \sum_{i=1}^{n} m(f; P, i)(\Delta x)_{i}.$$

Upper and lower integrals

 \mathcal{P} : set of all partitions of [a, b].

Definition (Upper and lower Riemann integrals)

Upper Riemann integral and **lower Riemann integral** of f on [a, b] are

$$\int_{a}^{b} f(x) dx = \inf \left\{ U(f; P) \mid P \in \mathcal{P} \right\},$$
$$\int_{a}^{b} f(x) dx = \sup \left\{ L(f; P) \mid P \in \mathcal{P} \right\},$$

respectively.

Upper Riemann integral is "best (lowest) possible overestimate" of area under curve, Lower Riemann integral is "best (highest) possible underestimate."

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Definition (Riemann integral)

To say f is **integrable** on [a, b] means that f is bounded on [a, b]and upper and lower integrals of f on [a, b] are equal. If f is integrable, **Riemann integral of** f **on** [a, b] is

$$\int_{a}^{b} f(x) \, dx = \overline{\int_{a}^{b}} f(x) \, dx = \underline{\int_{a}^{b}} f(x) \, dx$$

Sequential Criteria for Integrability

For bounded $f : [a, b] \rightarrow \mathbf{R}$, the following are equivalent:

- 1. f is integrable on [a, b].
- 2. There exists a sequence of partitions P_n such that $\lim_{n\to\infty} (U(f; P_n) L(f; P_n)) = 0.$
- 3. For any $\epsilon > 0$, there exists a partition P such that $U(f; P) L(f; P) < \epsilon$.

Furthermore, if condition (2) holds, then

$$\lim_{n\to\infty} L(f; P_n) = \int_a^b f(x) \, dx = \lim_{n\to\infty} U(f; P_n).$$