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The following picture shows the logical structure of the main axioms, definitions, and
theorems in Analysis I. Theorems are in unshaded boxes, definitions are in shaded lighter
boxes, and axioms are in shaded heavier boxes. More important results are in boldface or
larger type.
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The summary

We assume that the real numbers R satisfy the axioms of an ordered field, i.e., grade
school arithmetic and ≤ work the way you think they do. To describe the one other key
axiom we assume for R, we need the following definitions.

Definition (Upper bound). Let S be a nonempty subset of R. To say that u ∈ R is an
upper bound for S means that for every x ∈ S, we have x ≤ u.

Definition (Supremum). Let S be a nonempty subset of R. To say that u ∈ R is a
supremum for S, or u = supS, means that two things hold:

1. u is an upper bound for S.

2. u is the least upper bound of S.
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Part 2 of the definition of supremum has two equivalent reformulations:

2′. If v is an upper bound for S, then u ≤ v.

2′′. If v < u, then v is not an upper bound for S.

Version 2′′ means that you can use the following structure to prove that an upper bound u
for S is the least upper bound of S:

Assume v < u.
...
(stuff)
...
(*) So there exists some x ∈ S such that v < x.

The point being, (*) says precisely that v is not an upper bound for S.
In any case, we can now state the last axiom we assume for R:

Axiom (Completeness/Least upper bound property). Let S be a nonempty subset of R.
If S is bounded above (has an upper bound), then supS exists.

There are analogous definitions of lower bound and inf S, the greatest lower bound of S.
The least upper bound property also implies an analogous greatest lower bound property:
Every nonempty subset of R that is bounded below has an inf. We also have the following
useful tool for interpreting the meaning of supS.

Theorem (Arbitrarily Close Criterion). Let S be a nonempty subset of R, and suppose
that u is an upper bound for S. Then the following are equivalent:

1. For every ϵ > 0, there exists some s ∈ S such that u− s < ϵ (i.e., u− ϵ < s ≤ u).

2. u = supS.

We next turn to sequences.

Definition (Sequence). A sequence in a setX ⊆ R is a function a : N → R. By convention,
instead of a(n), we write an.

In other words, a sequence is a list a1, a2, a3, · · · ∈ X, in that particular order. Note
that sometimes sequences begin a0, a1, . . . , or a13, a14, . . . , or a−3, a−2, . . . , etc.

Definition (Limit of a sequence). For a sequence an in R and L ∈ R, to say that lim
n→∞

an =

L (or an converges to L) means that for every ϵ > 0, there exists some N(ϵ) such that if
n ∈ N and n > N(ϵ), then |an − L| < ϵ.

The definition of lim
n→∞

an = L is complicated, with multiple nested layers. However, it

has the virtue that every proof that lim
n→∞

an = L has roughly the following structure:
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Assume ϵ > 0.
We choose N(ϵ) = ??.

Assume n ∈ N, n > N(ϵ).
...
(stuff)
...
We conclude that |an − L| < ϵ.

So if n ∈ N and n > N(ϵ), then |an − L| < ϵ.
So there exists some N(ϵ) such that if n ∈ N and n > N(ϵ), then
|an − L| < ϵ.
Therefore, for every ϵ > 0, there exists some N(ϵ) such that if n ∈ N
and n > N(ϵ), then |an − L| < ϵ.

Again: This structure is complicated, but it’s all there in the definition of limit.
We come to two theorems that form the heart of the really deep part of Analysis I. To

state these, we need some definitions.

Definition (Monotone sequences). Let an be a sequence inR. To say that an is increasing
means that for all n, an ≤ an+1, and to say that an is decreasing means that for all n,
an ≥ an+1. Increasing and decreasing sequences are together called monotone sequences.

Definition. Let an be a sequence in R. To say that an is bounded above means that
there exists some M such that an ≤ M for all n ∈ N; and to say that an is bounded
below means that there exists some L such that L ≤ an for all n ∈ N. To say that an
is bounded means that an is both bounded above and bounded below; equivalently, an
bounded exactly when there exists some M such that |an| ≤ M (i.e., −M ≤ an ≤ M) for
all n ∈ N.

Definition. Let an be a sequence in R. A subsequence of an is a sequence ank
in the

variable k, where n1 < n2 < n3 < . . . is a strictly increasing sequence in N (i.e., a stricly
increasing sequence of indices).

Theorem (Monotone sequences converge). Let an be an increasing sequence in R that is
bounded above, and let S = {an | n ∈ N} (i.e., S is the unordered set of values that occur
in the sequence an). Then an converges to supS.

Similarly, a decreasing sequence that is bounded below converges to the inf of the set of
its values.

The monotone sequence theorem, combined with the fact that every sequence has a
monotone subsequence, leads to the following result, which is the magical engine that makes
the rest of Analysis I go.

Theorem (Bolzano-Weierstrass). Every bounded sequence in R has a convergent subse-
quence.

Note: Some books/courses may express the above material in terms of the notion of
compactness. For E ⊆ R, to say that E is open means that E is a union (possibly horribly
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infinite) of open intervals (a, b); and to say that E is closed means that if an is a convergent
sequence in E, then lim

n→∞
an ∈ E. To say that E ⊆ R is compact means that every (possibly

horribly infinite) open cover of E (collection of open sets whose union contains E) has a
finite subcover. The Heine-Borel Theorem then says that the E ⊆ R is compact if and only
if E is closed and bounded. Fancy! But if you look at the details, you’ll see that the proof
of Heine-Borel is driven by Bolzano-Weierstrass, because that’s the natural user interface
for the least upper bound property.

While the following definition is not strictly necessary for establishing the foundations
of analysis, it is both useful and important in the further study of analysis.

Definition (Cauchy sequence). For a sequence an in R and L ∈ R, to say that an is
Cauchy means that for every ϵ > 0, there exists some N(ϵ) such that if n, k ∈ N and
n, k > N(ϵ), then |an − ak| < ϵ.

In other words, the terms of a Cauchy sequence get closer to each other, but not necessary
to a fixed limit L. However, it follows from (for example) Bolazno-Weierstrass that:

Theorem (Cauchy completeness of R). Every Cauchy sequence in R converges to some
limit in R.

Note: The property of “every Cauchy sequence in X has a limit in X”, stated above for
X = R, is a way to generalize the completeness or R to other settings.

We now turn to real-valued functions defined on intervals in R.

Definition (Continuity). Let X be a subset of R and let f : X → R be a real-valued
function on X. To say that f is continuous at a ∈ X means that one of the following
conditions holds:

1. (Epsilon-delta continuity) For every ϵ > 0, there exists some δ(ϵ) > 0 such that if
x ∈ X and |x− a| < δ(ϵ), then |f(x)− f(a)| < ϵ.

2. (Sequential continuity) For every sequence xn in X with lim
n→∞

xn = a, we have

that lim
n→∞

f(xn) = f(a).

To say that f is continuous on X means that for every a ∈ X, f is continuous at a.

It can be shown that the two versions of the definition of continuity are equivalent, and
each of them has its uses and its own associated proof structure. For example, to prove
that f : X → R is continuous at a using the epsilon-delta definition:
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Assume ϵ > 0.
We choose δ(ϵ) = ??.

Assume x ∈ X, |x− a| < δ(ϵ).
...
(stuff)
...
We conclude that |f(x)− f(a)| < ϵ.

So if x ∈ X, |x− a| < δ(ϵ), then |f(x)− f(a)| < ϵ.
So there exists some N(ϵ) such that if x ∈ X and |x− a| < δ(ϵ),
then |f(x)− f(a)| < ϵ.
Therefore, for every ϵ > 0, there exists some N(ϵ) such that if x ∈ X
and |x− a| < δ(ϵ), then |f(x)− f(a)| < ϵ.

To prove that f : X → R is continuous at a using the sequential definition:

Assume xn is a sequence in X and lim
n→∞

xn = a.

...
(stuff)
...
We conclude that lim

n→∞
f(xn) = f(a).

And yes, at first, the sequential structure looks much simpler! However, to prove that
lim
n→∞

f(xn) = f(a), you may have to use the ϵ-N(ϵ) definition of the limit and set up a

nested structure as before. Furthermore, the assumption that lim
n→∞

xn = a itself is an ϵ-

N(ϵ) statement like “For every ϵ1 > 0, there exists. . . ” that must be unlocked by choosing
a suitable ϵ1. In other words, the sequential definition of the limit doesn’t really eliminate
the work in proofs about continuity; it just hides that work under a layer of abstraction.

Sequential continuity does have some notable advantages, though. For example, limit
laws (e.g., the sum law for limits) directly imply laws of continuity (e.g., the sum of contin-
uous functions is continuous). To give another example, the fact that the composition of
continuous functions is continuous follows quite directly and naturally from the sequential
definition. Finally, because the negation of the epsilon-delta is quite awkward to work with,
often the best way to prove that a function is not continuous is to use the bad sequence
method:

To prove that f : X → R is not continuous at x = c, find a sequence
xn in X such that:

� lim
n→∞

xn = c, but

� lim
n→∞

f(xn) ̸= f(c).

Note that the second condition on a bad sequence can be proven either by proving that
lim
n→∞

f(xn) does not exist or by proving that lim
n→∞

f(xn) exists but is not equal to f(c).
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While continuous functions have numerous interesting properties, the following is the
most important one for calculus. Call a real-valued function f bounded on X if there
exists some M > 0 such that |f(x)| ≤ M for all x ∈ X.

Theorem (Extreme Value Theorem). Let f be a real-valued function that is continuous on
a closed and bounded interval [a, b]. Then f is bounded and f attains both minimum and
maximum values on [a, b]. In other words, there exist c, d ∈ [a, b] such that f(c) ≤ f(x) ≤
f(d) for all x ∈ [a, b].

We also have the following theorem, which is not as pivotal as the Extreme Value
Theorem, but is still important.

Theorem (Intermediate Value Theorem). Let f be a real-valued function that is continuous
on an interval I. Suppose a < b in I. If f(a) < f(b), then for any y ∈ R such that
f(a) < y < f(b), there exists c ∈ I such that a < c < b and f(c) = y; and if f(a) > f(b),
then for any y ∈ R such that f(a) > y > f(b), there exists c ∈ I such that a < c < b and
f(c) = y.

There are several common approaches to proving the Extreme Value Theorem and Inter-
mediate Value Theorem. If we choose to take a relatively elementary and direct approach,
we can use the sequential definition of limit and various consequences of completness (sups
and Bolzano-Weierstrass) to prove those theorems. More abstractly, we can use the ideas
of compactness and continuity to show that if f is continuous, then the image of a compact
set under f is compact, and that the image of an interval under f is an interval. The
Extreme Value Theorem then follows from the Heine-Borel Theorem (see above) and the
Intermediate Value Theorem follows from the “between-ness” property of intervals.

We next have the idea of the limit of a function at a point.

Definition (Limit). Let X be a subset of R and let f : X → R be a real-valued function on

X. Let a be a limit point of X , i.e., suppose a is the limit of some sequence in X but not

necessarily itself in X. To say that lim
x→a

f(x) = L means that one of the following conditions

holds:

1. (Epsilon-delta limit) For every ϵ > 0, there exists some δ(ϵ) > 0 such that if x ∈ X,

x ̸= a , and |x− a| < δ(ϵ), then |f(x)− L| < ϵ.

2. (Sequential limit) For every sequence xn in X with lim
n→∞

xn = a and xn ̸= a , we

have that lim
n→∞

f(xn) = L.

The definition of limit is so similar to the definition of continuity that the main differ-
ences are really only those boxed above, plus the fact that we replace f(a) with the limit
value L. (I.e., with limits, we ignore what happens exactly at a and only worry about what
happens near a.) Consenquently:
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� As with continuity, the epsilon-delta and sequential definitions can be shown to be
logically equivalent.

� From the sequential definition, we get constant multiple, sum, product, and quotient
laws for limits, in the same way we get laws of continuity.

� A function f is continuous at x = a exactly when lim
x→a

f(x) = f(a).

� The epsilon-delta and sequential proof strategies for limits are the same as their ana-
logues for continuity, except that we assume x ̸= a or xn ̸= a at the appropriate
junctures.

As with continuity, sequential methods are also often useful to prove that a limit does
not exist, though they are more complicated than in the case of continuity, as we need to
rule out the possibility of any limit L existing, and not just one.

For f : X → R, to prove that lim
x→c

f(x) does not exist, either:

� (Really bad sequence:) Find a sequence xn in X such that:

– lim
n→∞

xn = c and xn ̸= c, but

– lim
n→∞

f(xn) does not exist.

� (Conflicting sequences:) Find sequences xn, x
′
n in X such

that:

– lim
n→∞

xn = c and xn ̸= c,

– lim
n→∞

x′n = c and x′n ̸= c, but

– lim
n→∞

f(xn) ̸= lim
n→∞

f(x′n).

The main reason we need function limits is the following definition.

Definition (Derivative). Let I be an interval, f : I → R a function, and a ∈ I. To say
that f is differentiable at a means that the limit

f ′(a) = lim
x→a

f(x)− f(a)

x− a
= lim

h→0

f(a+ h)− f(a)

h
(1)

exists. If f ′(a) exists, we call it the derivative of f at a, and if we let the point of
differentiability vary, we get a function f ′(x), called the derivative of f .

We can use our previous results about limits of functions to recover the usual algebraic
and composition properties of derivatives: the constant multiple, sum, product, quotient,
and chain rules, with the chain rule requiring more thought than the others. Also, differ-
entiable functions are “nicer” than continuous functions:

Theorem (Differentiability implies continuity). Let I be an interval, f : I → R a function,
and a ∈ I. If f is differentiable at a, then f is continuous at a.
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In terms of subequent theory, however, the key result is the Mean Value Theorem
(MVT). To reach the MVT, we start by analyzing local minima/maxima and derivatives.

Definition (Local minima and maxima). Let I be an interval in R, and f : I → R a
function. To say that f has a local maximum at c ∈ I means that there exists some δ > 0
such that if x ∈ I and |x− c| < δ, then f(x) ≤ f(c). Similarly, to say that f has a local
minimum at c ∈ I means that there exists some δ > 0 such that if x ∈ I and |x− c| < δ,
then f(c) ≤ f(x).

Note that the above definition of local minimum/maximum differs from the definition
in many calculus textbooks, because our defintion allows f to have a local min or max at
an endpoint of its domain, whereas many calculus textbooks specifically rule out endpoints
as local maxima or minima.

Theorem (Fermat’s Theorem). If f : [a, b] → R has a local minimum or maximum at
c ∈ (a, b) (i.e., c is not an endpoint) and f is differentiable at c, then f ′(c) = 0.

Fermat’s Theorem plus the Extreme Value Theorem then yield the following theorem,
which in many ways is the summit of differential calculus.

Theorem (Mean Value Theorem). Let f : [a, b] → R be differentiable on (a, b) (i.e., except
possibly at endpoints) and continuous on [a, b]. Then there exists some c ∈ (a, b) such that

f ′(c) =
f(b)− f(a)

b− a
. (2)

In other words, under the hypotheses of the MVT, there exists some point in the interior
of the domain of f where the instantaneous rate of change is equal to the average rate of
change over the whole interval [a, b]. Note that MVT follows from the special case where
f(a) = f(b), in which case the MVT says that there exists some c ∈ (a, b) such that f ′(c) = 0
(a result also known as Rolle’s Theorem).

There are many consequences of the MVT, but perhaps the most notable one is THE
BOX, which summarizes Calculus I in a box:

f ↗ ↘ ⌣ ⌢

f ′ + − ↗ ↘
f ′′ + −

In other words, if f ′(x) > 0 for all x in some open interval, then f is strictly increasing on
that interval; and so on.

We come to the Riemann integral, whose definition in analysis differs from the one
typically seen in calculus in one key aspect: Instead of only considering Riemann sums
based on uniform partitions with ∆x = (b − a)/n (Figure 1), we also consider Riemann
sums based on partitions with variable ∆xi (Figure 2). This greater flexibility is ultimately
helpful in proving the properties of the definite integral, but it does require more complicated
definitions, as follows.
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Figure 2: Riemann sums with a nonuniform partition

Definition (Partition). A partition P of [a, b] is a finite subset {x0, . . . , xn} ⊂ [a, b] such
that a = x0 < x1 < · · · < xn−1 < xn = b. We call [xi−1, xi] the ith subinterval of P , and
when P is understood, we use the abbreviation (∆x)i = xi − xi−1. See Figure 2.

Suppose P and Q are partitions of [a, b]. If P ⊆ Q, we say that Q is a refinement of
P , as each subinterval of P is the union of of one or more subintervals of Q. Similarly, we
use P ∪ Q to denote the partition of [a, b] obtained from the points of P ∪ Q, written in
ascending order, and we call P ∪Q the common refinement of P and Q.

Definition (Upper and lower Riemann sums). Let P = {x0, . . . , xn} be a partition of [a, b].
Since we continue to assume that f(x) is bounded, we can define

M(f ;P, i) = sup {f(x) | x ∈ [xi−1, xi]} ,
m(f ;P, i) = inf {f(x) | x ∈ [xi−1, xi]} .

(3)

We define the upper Riemann sum U(f ;P ) to be

U(f ;P ) =

n∑
i=1

M(f ;P, i)(∆x)i, (4)

and we define the lower Riemann sum L(f ;P ) to be

L(f ;P ) =

n∑
i=1

m(f ;P, i)(∆x)i. (5)
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In other words, we define Riemann sums as in calculus, except that we use sups and infs
instead of values of f(x), and (∆x)i is variable, not constant. Again, see Figure 2.

Definition (Upper and lower Riemann integrals). Let P be the set of all partitions of [a, b].
We define the upper Riemann integral and lower Riemann integral of f on [a, b] to
be ∫ b

a
f(x) dx = inf {U(f ;P ) | P ∈ P} , (6)∫ b

a
f(x) dx = sup {L(f ;P ) | P ∈ P} , (7)

respectively. Note that (at least in pictures, see Figure 2) each U(f ;P ) is an overestimate of
the area under y = f(x) and each L(f ;P ) is an underestimate of the area under y = f(x),
so we may think of (6) and (7) as best possible upper and lower estimates to the area under
the curve, respectively.

Definition (Riemann integral). To say that f is integrable on [a, b] means that f is
bounded on [a, b] and the upper and lower integrals of f on [a, b] are equal. If f is integrable,
we define the Riemann integral of f on [a, b] to be∫ b

a
f(x) dx =

∫ b

a
f(x) dx =

∫ b

a
f(x) dx. (8)

To prove that any particular function or class of functions is integrable, we need some
kind of technical tool like the following.

Theorem (Sequential Criteria for Integrability). Let f : [a, b] → R be bounded. Then the
following are equivalent.

1. f is integrable on [a, b].

2. There exists a sequence of partitions Pn such that lim
n→∞

(U(f ;Pn)− L(f ;Pn)) = 0.

3. For any ϵ > 0, there exists a partition P such that U(f ;P )− L(f ;P ) < ϵ.

Furthermore, if condition (2) holds, then

lim
n→∞

L(f ;Pn) =

∫ b

a
f(x) dx = lim

n→∞
U(f ;Pn). (9)

Most notably, one can use the sequential criterion to show that continuous functions are
integrable. We therefore see that:

Differentiability ⇒ Continuity ⇒ Integrability

The converses of those implications do not hold, as, for example, f(x) = |x| is continuous
but not differentiable at 0, and nonconstant step functions are integrable but not continuous.
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We can also use the sequential criterion to prove the usual properties of the definite
integral from calculus, like linearity:∫ b

a
(cf(x) + dg(x)) dx = c

∫ b

a
f(x) dx+ d

∫ b

a
g(x) dx (10)

and additivity of domain:∫ c

a
f(x) dx =

∫ b

a
f(x) dx+

∫ c

b
f(x) dx. (11)

Note that the proof of (11) is the main reason to use nonuniform partitions, in that the
union of a partition of [a, b] and a partition of [b, c] is a (nonuniform) partition of [a, c], a
fact that does not hold for uniform partitions.

Two other properties of the integral are not often used in calculus, but are frequently
used in analysis.

� Comparision: If f, g : [a, b] → R are integrable and f(x) ≤ g(x) for all x ∈ [a.b], we
have that ∫ b

a
f(x) dx ≤

∫ b

a
g(x) dx. (12)

� Triangle inequality for integrals: If f : [a, b] → R is integrable, then so is |f(x)|,
and ∣∣∣∣∫ b

a
f(x) dx

∣∣∣∣ ≤ ∫ b

a
|f(x)| dx. (13)

Note the analogy with the triangle inequality, as written in the form∣∣∣∣∣
n∑

i=1

ai

∣∣∣∣∣ ≤
n∑

i=1

|ai| . (14)

The crowning achievement of first-semester analysis is the proof of the Fundamental
Theorems of Calculus. Different texts number these theorems differently, so we use descrip-
tive names.

Theorem (FTC: Integral of a derivative). Let f : [a, b] → R be differentiable on (a, b) and
continuous on [a, b], and suppose that f ′ is integrable on [a, b]. Then∫ b

a
f ′(x) dx = f(b)− f(a). (15)

Note that the hypotheses of the Mean Value Theorem reappear above, as they are
precisely what is needed for the proof.
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Theorem (FTC: Derivative of an integral). Let I be an interval with a ∈ I, let f : I → R
be integrable on any closed and bounded subinterval of I, and define

F (x) =

∫ x

a
f(t) dt. (16)

Then F is continuous on I. Furthermore, if f is continuous at c ∈ I, then F is differentiable
at c, and

F ′(c) =
d

dx

(∫ x

a
f(t) dt

)∣∣∣∣
x=c

= f(c). (17)

The reader may recognize the “integral of a derivative” FTC as the main tool used
in calculus to evaluate definite integrals exactly. The “derivative of an integral” FTC
is also useful because it shows that, for example, every continuous function f(x) has an

antiderivative of the form F (x) =

∫ x

a
f(t) dt, which one can think of a proof of the existence

of a solution y = F (x) to the differential equation
dy

dx
= f(x).

Infinite series

While not necessary for the development of calculus per se, series are often a part of a
first-semester course in analysis.

Definition (Series). Let an (n ≥ k) be a sequence in R. We define the corresponding

(infinite) series
∞∑
n=k

an as follows.

� First, we recursively define the sequence of partial sums sN by setting sk = ak
and, for N ≥ k, setting sN+1 = sN + aN+1. In other words:

sN = ak + ak+1 + · · ·+ aN−1 + aN . (18)

� To say that

∞∑
n=k

an converges means that the sequence of partial sums sN converges,

and similarly for divergence. Furthermore, if

∞∑
n=k

an converges, we define

∞∑
n=k

an = lim
N→∞

sN . (19)
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Series are just sequences of partial sums, so their convergence and divergence can be
analyzed using all of the methods previously developed for sequences. However, there are
several methods especially designed for series that are quite useful. For example, when a
series has a less complicated formula, we can understand its convergence with the ratio and
p-series tests.

Definition (Absolute convergence). To say that a series
∑

an converges absolutely

means that
∑

|an| converges. Note that it follows from the Comparison Test (below) that

if
∑

|an| converges, then the original series
∑

an then also converges.

Theorem (Ratio Test). Suppose an is a sequence such that an ̸= 0 and lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = r.

Then:

1. If r < 1, then
∑

an converges absolutely.

2. If r > 1, then
∑

an diverges.

Theorem (p-series). The p-series
∞∑
n=1

1

np
converges if p > 1 and diverges if 0 < p ≤ 1.

Series with more complicated formulas are often analyzed by comparing them to less
complicated series whose convergence we can understand via the ratio or p-series tests.
Specifically:

Corollary (Comparison Test). Let an and bn be sequences, with bn ≥ 0.

1. If
∑

bn converges and |an| ≤ bn for all n (or sufficiently large n), then
∑

an con-
verges.

2. If
∑

bn diverges, an ≥ 0, and bn ≤ an for all n (or sufficently large n), then
∑

an
diverges.

Using the Comparison Test often involves maniuplating inequalities in a not-necessarily-
intiuitive way. The following version of the Comparison Test replaces such manipulations
by taking limits.

Theorem (Limit Comparison). Let
∑

an and
∑

bn be series with an, bn > 0, and suppose

that lim
n→∞

an
bn

= C, where 0 < C < +∞. Then
∑

an converges if and only if
∑

bn
converges.

Finally, we also have the following result, which is useful as long as the reader avoids
its tempting, but false, converse.

Corollary (nth Term Test for Divergence). If
∑

an converges, then lim
n→∞

an = 0. Equiv-

alently, if lim
n→∞

an either does not exist or has a nonzero value, then
∑

an diverges.
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When we have a sequence of functions fn : X → R, the question of whether the sequence
fn converges to some f : X → R, and how, can be quite subtle. First, to say that fn
converges to f pointwise means that for any fixed x ∈ X, we have that lim

n→∞
fn(x) = f(x).

In contrast:

Definition (Uniform convergence). Let fn : X → R be a sequence of functions and let
f : X → R be a function. To say that the sequence fn converges uniformly to f on X
means that for any ϵ > 0, there exists some N(ϵ) independent of x ∈ X such that for any
x ∈ X and n ∈ Z such that n > N(ϵ), we have |f(x)− fn(x)| < ϵ.

For comparison, to say that fn converges pointwise to f on X means that for any x ∈ X
and any ϵ > 0, there exists some N(ϵ, x) such that for any x ∈ X and n ∈ Z such that
n > N(ϵ, x), we have |f(x)− fn(x)| < ϵ. In other words, the difference between pointwise
and uniform continuity is that in uniform continuity, there is some worst-case “rate of
convergence” N(ϵ), independent of x, that holds for all x ∈ X simultaneously.

Uniform convergence is important because the (perhaps more natural) concept of point-
wise convergence does not preserve some key function properties. For example, it is possible
to find a sequence of functions fn that converges pointwise to a function f such that:

� Each fn is continuous, but f is not continuous.

� Each fn is differentiable, but f is not differentiable.

� Both f and each of the fn are differentiable, but

lim
n→∞

f ′
n(x) ̸= f ′(x). (20)

� Each fn is integrable, but f is not integrable.

� Both f and each of the fn are integrable, but

lim
n→∞

∫ b

a
fn(x), dx ̸=

∫ b

a
f(x), dx. (21)

On the other hand, suppose fn converges uniformly to f . In that case:

� If each fn is continuous, then f is continuous.

� If each fn is integrable, then f is integrable, and

lim
n→∞

∫ b

a
fn(x), dx =

∫ b

a
f(x), dx. (22)

In other words, we can move the limit past the integral:

lim
n→∞

∫ b

a
fn(x), dx =

∫ b

a
lim
n→∞

fn(x), dx. (23)
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Note that if each fn is differentiable, even if fn converges uniformly to f , we can still get a
non-differentiable f or a situation where (20) occurs. To preserve differentiability, we need
stronger conditions along the lines of “Both fn and f ′

n converge uniformly.”
To determine if fn converges uniformly:

� If fn(x) doesn’t converge pointwise, it can’t converge uniformly.

� If fn(x) converges pointwise to some function f(x):

– Uniform convergence preserves continuity, so if fn(x) is continuous and f(x) isn’t,
then convergence can only be pointwise.

– Uniform convergence preserves integrability and integrals, so if fn(x) is integrable
and f(x) isn’t, or if (22) doesn’t hold, then convergence can only be pointwise.

– Otherwise, you may have to do things the hard way: Let

dn = sup{|fn(x)− f(x)| | x ∈ X}. (24)

If lim
n→∞

dn = 0, then convergence is uniform; otherwise, convergence can only be

pointwise.

Fortunately, in the important case of a series of functions
∞∑
n=0

gn(x), we have a specialized

tool for proving uniform convergence.

Theorem (Weierstrass M-test). Let X be a subinterval of R, let gn : X → R be a sequence
of functions, and suppose that Mn is a sequence of nonnegative real numbers such that∑

Mn converges (absolutely) and

|gn(x)| ≤ Mn (25)

for all x ∈ X. Then
∞∑
n=0

gn(x) converges absolutely and uniformly to some f : X → R.

Uniform convergence works particularly well in the case of a power series f(x) =
∞∑
n=0

anx
n. First, the fundamental feature of power series is the radius of convergence.

Theorem (Radius of convergence). Let f(x) =
∞∑
n=0

anx
n be a power series. Then there

exists some R ≥ 0 such that:

1. For any R0 such that 0 ≤ R0 < R, the power series f(x) converges uniformly on the
domain |x| ≤ R0.

2. Therefore, f(x) converges pointwise (but not necessarily uniformly) on the domain
|x| < R.

3. When |x| > R, f(x) diverges; and anything can happen on the boundary |x| = R.
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Furthermore, if ρ = lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ exists, then R =
1

ρ
, where we define R = ∞ when ρ = 0.

A careful application of uniform convergence then shows that on the domain |x| <

R, f(x) =
∞∑
n=0

anx
n is both integrable on any closed subinterval and differentiable; and

furthermore,∫ x

0
f(t) dt =

∫ x

0

∞∑
n=0

ant
n dt =

∞∑
n=0

∫ x

0
ant

n dt =

∞∑
n=0

anx
n+1

n+ 1
=

∞∑
k=1

ak−1x
k

k
, (26)

f ′(x) =
d

dx

∞∑
n=0

anx
n =

∞∑
n=0

d

dx
(anx

n) =

∞∑
n=1

nanx
n−1 =

∞∑
k=0

(k + 1)ak+1x
k, (27)

when |x| < R. In other words, as long as we stay strictly inside the radius of convergence,
term-by-term integration and differentiation work correctly and we can push an indefinite
integral or derivative past the infinite sum.
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