Math 128B, Mon Feb 22
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Use a laptop or desktop with a large screen so you can read
these words clearly.

In general, please turn off your camera and mute yourself.

Exception: When we do groupwork, please turn both your
camera and mic on. (Groupwork will not be recorded.)

Please always have the chat window open to ask questions.
Reading for today: Ch. 16. For next Mon: Ch. 17.
PS03 due tonight.

Exam review tonight, 4-5pm, on Zoom (use office
hour/problem session link).

Exam 1 on Wed Feb 24.



True/false/justify problems
Given a statement:
If true, write TRUE for full credit.

If false, write FALSE and then justify as specifically as possible, which often
means coming up with a counterexample.

Example:
True or false: Every element of Zis a unit.

FALSE: 2 is not a unit in Z because 2x = 1 has no solutions in Z.



Polynomials with coefficients in a ring R

comvm

Let R be ?Aring. We define the ring R[x], the ring of polynomials
with coettlicients in R, as follows.
Set: All expressions of the form

n
E aix' = apx" + ap_1x"L 4 -+ + apx® + a1x + ao,
i=1 and x is an "indeterminate”,
) ) i.e., a symbol, not a var.
where each a; is an element of the ring R.

Addition and multiplication: in R[x] are each defined to work
like addition and multiplication of polynomials with real
coefficients, except that all coefficient arithmetic is performed in
the ring R.
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The substitution-reduction homomorphim

R,S commutative rings. @ Ph |

Suppose ¢ : R — S is a homomorphism, and « € S. Define
®: R[x] = S for p(x) = apx" + -+ + a1x + ao

by the formula ®(p(x)) = p(«), where

p(x) = (an)x" + - -+ + p(a1)x + ¢(ao).

l.e., apply ® by reducing the coefficients of p(x) by the
homomorphism ¢ and plugging in a.

Theorem

The above map ® is a homomorphism. |l.e., substitution is a
homomorphism, and reduction of coefficients is also a
homomorphism.

Idea of proof: Since the operations of R[x] are what is required
by the distributive law, those operations end up being preserved
when applied to elements of S.



Points:
* Reducing coefficients is a homomorphism
* Plugging in elements is a homomorphism.
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l.e.: Plugging in is a homomorphism.



A key property of F[x]: Division with remainder

Theorem
Let F be a field, and let a(x) and d(x) be polynomials in F[x] with
d(x) # 0. There exist unique q(x), r(x) € F[x] such that

a(x) = d(x)q(x) + r(x), Lwith deg(r(x)) < deg(d(x)).}

Proof: Long division of polynomials! Example in (Z.'Z[X]:

x> 42~
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Consequences of long division

Corollary (Remainder Theorem)

Let F be a field, let f(x) € F[x]| be a polynomial, and let « be an
element of F. When we divide f(x) by (x — «), the remainder is a
constant, namely r = f(«) (the element of F obtained by
substituting « for x in f(x)).

Corollary (Factor Theorem)

Let F be a field, f(x) € F[x], and « € F. Then (x — «) divides

f(x) (i.e., with a remainder of 0) exactly when f(«a) = 0. .
N’y

Theorem (Degree n has <= n zeros)

Let F be a field and let f(x) € F[x] be a polynomial of degree
n>1. Then f(x) has at most n distinct zeros in F, i.e., there are
at most n distinct elements o € F such that f(a) = 0.
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Consequences of long division DT - Z/Y“"'7 5

Q: What are the elements of R[x]/ (X¢=+=x*==%F1)?

A: Let A= <X +2x% — 4x+7>
Claim: Every element of an be represented unlquely as

?F( )+ A, where deg p(x) < 3. DREY /Jr
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Applying this repeatedly allows us to reduce any poly of
degree >= 4 to a polynomial of degree <= 3.

(This is equivalent to long division by

x"4 + 2x"2 - 4x + 7, paying attention only to remainders.)

In general, working in F[x]/<p(x)=, with A =<p(x)=, we can get
unique coset representatives r(x)+A for every element of
F[x)J/A, if we take deg r(x) < deg p(x).



F[x] is a PID

Definition

A principal ideal domain is an integral domain R in which every
ideal has the form (a) = {ra | r € R} for some a € R.
Non-example: (x,2) in Z[x] can't be generated by a single element.
Theorem

If F is a field, then F[x] is a PID.



Finding a generator of an ideal of F[x]

Theorem

F a field, | a nonzero ideal of F[x], g(x) € I.

Then | = (g(x)) exactly when g(x) is a nonzero polynomial of
smallest possible degree in I.



