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Supplement to Gallian Ch. 24

Definition 1. Let X be a set. We define Sym(X) to be the group of all bijections X → X,
or the symmetric group on X. Note that if X = {1, . . . , n}, Sym(X) is just the usual
symmetric group Sn.

Definition 2. Let G be a group, and let X be a set. We define an action of G on X to
be a (group) homomorphism ρ : G → Sym(X). Note that since elements of Sym(X) are
functions from X to X, instead of writing the image of g ∈ G as ρ(g), we write its image
as ρg. In other words, to say that ρ is an action of G on X is to say that for each g ∈ G,
we have a bijection ρg : X → X such that for g, h ∈ G, ρgh = ρgρh.

Definition 3. Let G be a group, let X be a set, and let ρ : G → Sym(X) be an action of
G on X. For x ∈ X, we define the orbit of x under the action of G to be

orbG(x) = {ρg(x) | g ∈ G} = {y ∈ X | y = ρg(x) for some g ∈ G} ⊆ X, (1)

and we define the stabilizer of x under the action of G to be

stabG(x) = {g ∈ G | ρg(x) = x} ≤ G. (2)

Example 4. Let G be a permutation group (i.e., a subgroup of Sn) and let X = {1, . . . , n}.
Then the natural embedding ρ : G → Sn defines an action of G on X, and orbG(x) and
stabG(x) are as defined in Gallian Ch. 7.

Example 5. Let G = Dn and let X be the set of the vertices of a regular n-gon. Then the
usual geometric picture of Dn (see Gallian Ch. 1) defines an action of G on X; furthermore,
for x ∈ X, orbG(x) = X and stabG(x) is a cyclic group of order 2 generated by the reflection
whose axis of symmetry passes through x. Analogous statements hold if X is the set of
edges of a regular n-gon.

Example 6. Let G be any group, and let X = G. Then the map λ : G → Sym(X) defined
by λg(x) = gx defines an action of G on itself by left multiplication. (This is the left regular
representation of G; see Gallian Thm. 6.1.) Furthermore, for x ∈ X = G, orbG(x) = X = G
and stabG(x) is trivial.

Example 7. Let G be any group, and let X = G. Then the map ϕ : G → Sym(X) defined
by ϕg(x) = gxg−1 defines an action of G on itself by left conjugation (see Gallian Thm. 24.1).
Furthermore, for x ∈ X = G, orbG(x) is the conjugacy class of x, and stabG(x) = C(x),
the centralizer of x.

Example 8. Let G be any group, and let X be the set of all subgroups of G. Then the
ϕ : G → Sym(X) defined by ϕg(H) = gHg−1 defines an action of G on X by left conjugation
(see Gallian, proof of Thm. 24.4). Furthermore, for H ∈ X, orbG(H) is the conjugacy class
of H, and stabG(H) = N(H), the normalizer of H.

Exercise. Verify the above statements about orbits and stabilizers.



Theorem 9. Let G be a group, let X be a set, and let ρ : G → Sym(X) be an action of G
on X. For any x ∈ X, let C be the set of all left cosets of the coset stabG(x) in G. Then
the function Φ : C → orbG(x) defined by

Φ(a stabG(x)) = ρa(x) (3)

is well-defined and bijective. In particular, if orbG(x) is finite, then

|orbG(x)| = |G : stabG(x)| . (4)

Proof. The only possible ambiguity in the definition of Φ comes in the choice of coset repre-
sentative a in the coset a stabG(x). However, if a′ is another representative for a stabG(x),
then a′ = ah for some h ∈ stabG(x) (Gallian, Lemma in Ch. 7), and

ρa′(x) = ρah(x) = ρaρh(x) = ρa(x), (5)

by the definition of stabG(x).
To see that Φ is surjective, for y ∈ orbG(x), by definition of orbit, y = ρg(x) for

some g ∈ G, which means that y = Φ(g stabG(x)). To see that Φ is injective, suppose
Φ(a stabG(x)) = Φ(b stabG(x)). Then ρa(x) = ρb(x), which means that

ρa−1b(x) = ρa−1ρb(x) = ρ−1
a ρa(x) = x. (6)

Therefore, b−1a ∈ stabG(x), which means that a stabG(x) = b stabG(x) (Gallian, Lemma in
Ch. 7).

Remark 10. Let G be a group, let X be a set, and let ρ : G → Sym(X) be an action of
G on X. In other classes, the ρ part of the notation is omitted/implied, and an action of
G on X is written as a way of defining the “product” g.x. In other words, we may define a
(left) action of G on X to be a way to define the product g.x such that, for all x ∈ X and
g1, g2 ∈ G,

1.x = x, (7)
(g1g2).x = g1.(g2.x). (8)

Exercise. Prove that the definition of action in Remark 10 is equivalent to Definition 2.
(What role does (7) play in the definition?)

Remark 11. One advantage to the definition of left action in Remark 10 is that it allows
us to define what is meant by a right action x.g. This is useful primarily because it is
sometimes helpful to consider left and right actions simultaneously. In particular, we can
denote the fact that certain left and right actions commute as an “associtivity” property,
i.e., (g.x).h = g.(x.h).


