Math 128A, Mon Nov 09

- Use a laptop or desktop with a large screen so you can read these words clearly.
- In general, please turn off your camera and mute yourself.
- Exception: When we do groupwork, please turn both your camera and mic on. (Groupwork will not be recorded.)
- Please always have the chat window open to ask questions.
- Reading for today: Ch. 11. Reading for one week from today: Ch. 12. Rings?
- PS09 outline due today, full version due in 1 week.
- NO CLASSES ON WED NOV 11 - VETERANS DAY
- Problem session, Fri Nov 13, 10:00-noon on Zoom.

The Fundamental Theorem of Finite Abelian Groups

Theorem

Let G be a finite abelian group.

1. G is isomorphic to an external direct product of cyclic groups of prime power order:

$$
G \approx \mathbf{Z}_{p_{1}^{n_{1}}} \oplus \mathbf{Z}_{p_{2}^{n_{2}}} \oplus \cdots \oplus \mathbf{Z}_{p_{k}^{n_{k}}}
$$

2. This product is unique, assuming that (a) $p_{1} \leq p_{2} \leq \cdots \leq p_{k}$ and (b) if $p_{i}=p_{i+1}$, then $n_{i} \leq n_{i+1}$. (l.e., parts corresponding to each prime appear in increasing order by prime, and prime powers appear in increasing order by prime.)

Note that as a consquence, two finite abelian groups with different decompositions into external direct products of cyclic groups of prime power order cannot be isomorphic.

Example: Classify finite abelian groups of order $7^{3} 11^{4}$
First: To see the different ways to express $11^{\wedge} 4$ as a product of powers of 11 , we
use partitions theft

$$
\begin{array}{rl|l}
4 & =4 & \\
& =3+1 & \\
& 11^{4} \cdot 11 \\
& =2+2 & \\
& =2+1+1 & \\
& 11^{2} \cdot 11^{2} \cdot 11 \cdot 11 \\
& =1+1+1+1 & \\
\hline
\end{array}
$$

Ages of order $\|^{+} \quad \mathbb{Z}_{11^{2}} \oplus \mathbb{Z}_{11} \oplus Z_{11}$

$$
\mathbb{Z}_{u^{4}}, \mathbb{Z}_{13} \oplus \mathbb{Z}_{11}, \mathbb{Z}_{11^{2}} \oplus \mathbb{Z}_{1\}^{T}}, \mathbb{Z}_{1} \oplus \mathbb{Z}_{11} \oplus \mathbb{C}_{1} \oplus \mathbb{Z}_{1}
$$

Ex.

$$
\begin{aligned}
& \left(\begin{array}{l}
\mathbb{Z}_{2^{2}} \oplus \mathbb{Z}_{7} \oplus \mathbb{Z}_{11} \oplus \mathbb{Z}_{11} \oplus \mathbb{Z}_{11} \\
\mathbb{Z}_{3} \oplus \mathbb{Z}_{11} \oplus \oplus \mathbb{Z}_{11} \\
(13 \text { others })^{I f} 1 G=7^{3} 1^{4} \\
\mathbb{Z}_{49} \oplus \mathbb{Z}_{7} \oplus \mathbb{Z}_{121} \oplus \mathbb{Z}_{11} \oplus \mathbb{Z}_{11}=G
\end{array}\right. \\
& \text { or } G=\mathbb{Z}_{343} \oplus \mathbb{Z}_{1331} \oplus \mathbb{Z}_{11} \oplus \mathbb{Z}_{11} \stackrel{\sim_{n 1} t}{\approx}
\end{aligned}
$$

Q: If we encounter a finite abelian group G "in the wild" (i.e., we come across a finite abelian group that we don't already understand as an external direct product of cyclic groups), how can we figure out which product of cyclic groups of prime power order G is isomorphic to?

A: One method: Look at orders of elements in G. (Brute force, but brute force with a plan, at least.)

Example: A subgroup of $U(200)$
Consider

$$
|a|=16 \quad-1
$$

$$
G=\{1,7,43,49,51,57,93,99,101,107,143,149,151,157,193,199\}
$$

442244224422442
with operation multiplication $(\bmod 200)$, ie., consider G as a subgroup of $U(200)$.

Since G is a finite abelian group, G is isomorphic to an external direct product of cyclic groups of prime power order. Which one?
Ans: First list all abelian groups of order $|G|=16=2^{4}$.

$$
\begin{array}{l|l}
4 & \mathbb{Z}_{1 / 6} \\
3+1 & \mathbb{Z}_{8} \oplus \mathbb{Z}_{2} \\
Z_{1+2} & \mathbb{Z}_{4} \theta \mathbb{Z}_{4} \\
2+1+1 & \mathbb{Z}_{4} \Theta \mathbb{Z}_{2} \oplus \mathbb{Z}_{2}
\end{array} \Theta_{\mathbb{Z}}
$$

Order of 7 in G by brute force

$$
\begin{aligned}
& 7^{1}=7,7^{2}=49,73=343=143 \\
& \left(50^{\prime \prime}-1\right) \quad 7^{4}=2500-100+1=1(\mathrm{nirl} \\
& \operatorname{ord}(7)=4 \operatorname{ard}(41)=2, \operatorname{arl}(143)=4 \\
& S 1^{2}=2601=1 \quad|0|^{2}=10201=1 \\
& 193=-7 ;(-7)^{2}=49 ;(-7)^{3}=57,(-7)^{4}=1 \\
& 107^{2}=11449=49 \quad 107^{3}=107.49 \\
& =\operatorname{lam}_{343}=43
\end{aligned}
$$

S: Largestorderis $4 . \widetilde{C}_{4} \| \mathbb{D}_{4}$ or

More detrill (Greeky 1 gig)

$$
\begin{aligned}
& \rangle\rangle \approx \mathbb{Z}_{4} \sim \mathbb{Z}_{4} \oplus \mathbb{Z}_{2} \oplus\{c\} \\
& \{1,7,49,143\}_{c} \\
& \left.\langle\mid 99\rangle=\langle-1\rangle \approx \mathbb{\mathbb { Z }}_{2}\right\rangle\{-1,-7,-49,-143\} \\
& 10 \mid \notin\{1,7,49,143,-1,-7,-49,-143\} \\
& \langle 101\rangle \approx \mathbb{Z}_{2} \\
& \left.G=\left\langle\frac{7}{\mathbb{Z}_{4}}\right\rangle \times \frac{199}{\mathbb{Z}_{2}}\right\rangle \times\left\langle\frac{101}{\mathbb{Z}_{2}}\right\rangle
\end{aligned}
$$

Proof of the Fundamental Theorem of Finite Abelian Groups

We'll sketch this to show that you've learned enough tools to be able to analyze this pretty complicated situation, and even classify one type of groups completely! Steps:

1. Prove that if G abelian, $|G|=p^{m} k$, and $\operatorname{gcd}(k, p)=1$, then $G \approx H \oplus K$, where $|H|=p^{m}$ and $|K|=k$. This reduces problem to groups of prime power order.
2. Prove that if G abelian and $|G|=p^{n}$, and a is an element of largest possible order in G, then $G \approx\langle a\rangle \oplus K$ for some $K \leq G$. By induction, any finite abelian G is isomorphic to a product of cyclic groups of prime power order.
3. Prove that if G is abelian $|G|=p^{n}$, then there can be only one direct product of cyclic groups of order a power of p that is isomorphic to G.

Reducing to prime power order

Theorem
If G abelian, $\operatorname{gcd}(n, k)=1$, and $|G|=n k$, then $G \approx H \oplus K$.
Furthermore, if $n=p^{m}$, then $|H|=p^{m}$ and $|k|=K$.
Proof: Let

$$
\begin{aligned}
& H=\left\{x \in G \mid x^{n}=e\right\} \\
& K=\left\{x \in G \mid x^{k}=e\right\}
\end{aligned}
$$

All subgroups normal in an abelian group, so remains to check that $H \cap K=\{e\}$ and $H K=G$.

Prime power order abelian groups are products of cyclic groups

Theorem
If G abelian and $|G|=p^{n}$, and a is an element of largest possible order in G, then $G \approx\langle a\rangle \oplus K$ for some $K \leq G$.
This is complicated! So we just sketch the idea. Proceeding by induction on $|G|$:

- Let a be an element of largest possible order in G.
- Choose $b \in G$ of smallest possible order such that $b \notin\langle a\rangle$. It can then be shown (through hard work) that $\langle b\rangle \cap\langle a\rangle=\{e\}$.
- Then $\bar{G}=G /\langle b\rangle$ is a group of order smaller than $|G|$, and \bar{a} (the image of a in \bar{G}) is an element of maximum order in \bar{G}. By induction, $\bar{G} \approx\langle\bar{a}\rangle \times \bar{K}$ for some $\bar{K} \leq \bar{g}$. Pull that back to G to get $G \approx\langle a\rangle \oplus K$.

Cyclic products are unique

Theorem
If G is abelian and $|G|=p^{n}$, then there can be only one direct product of cyclic groups of order a power of p that is isomorphic to G.

Again, induction on $|G|$. Suppose

$$
G \approx \mathbf{Z}_{p^{n_{1}}} \oplus \mathbf{Z}_{p^{n_{2}}} \oplus \cdots \oplus \mathbf{Z}_{p^{n_{k}}}
$$

and also

$$
G \approx \mathbf{Z}_{p^{m_{1}}} \oplus \mathbf{Z}_{p^{m_{2}}} \oplus \cdots \oplus \mathbf{Z}_{p^{m_{r}}}
$$

The number of elements of order dividing p in $\mathbf{Z}_{p^{n_{1}}} \oplus \mathbf{Z}_{p^{n_{2}}} \oplus \cdots \oplus \mathbf{Z}_{p^{n_{k}}}$ is:

So $k=r$, and can take factor group $G /\left(\mathbf{Z}_{p} \oplus \cdots \oplus \mathbf{Z}_{p}\right)$.

