Math 127, Mon Apr 25

- ▶ Reading for today: 8.4–8.5.
- ► Reading for Wed Apr 27: 9.2–9.3.
- ▶ PS09 outline due today(-ish), completed version due Wed(-ish)
- ► **EXAM 3** on Mon May 02 or Wed May 04 take that survey now!

Cyclic codes Subspotte

Definition

Let \mathcal{C} be a binary linear code of length h. To say that \mathcal{C} is **cyclic** means that it is closed under cyclic permutation of coordinates.

That is, to say that $\mathcal C$ is cyclic means that if $\begin{vmatrix} c_0 \\ c_1 \\ c_2 \end{vmatrix}$ is in $\mathcal C$, then $\begin{vmatrix} c_0 \\ c_1 \end{vmatrix}$

so are $\begin{vmatrix} c_{n-1} \\ c_0 \\ c_1 \\ \vdots \\ c_{n-2} \end{vmatrix}$, $\begin{vmatrix} c_{n-2} \\ c_{n-1} \\ \vdots \\ c_{n-3} \end{vmatrix}$, and so on.

Cyclic codes, cont.

The **polynomial notation** for vectors in \mathbf{F}_2^n represents $\begin{vmatrix} c_0 \\ \vdots \\ as \end{vmatrix}$ as

$$\begin{bmatrix} c_0 \\ \vdots \\ c_{n-1} \end{bmatrix}$$
 as

$$c(x) = c_0 + c_1 x + c_2 x^2 + \dots + c_{n-1} x^{n-1}$$

in the ring $R = \mathbf{F}_2[x]/(x^n - 1)$ (i.e., setting $x^n = 1$). In that notation:

Theorem

Let \mathcal{C} be a binary linear code of length n. In polynomial notation, \mathcal{C} is cyclic if and only if it is an ideal of the ring $\mathbf{F}_2[x]/(x^n-1)$.

Exe-{0000, 1100, 0110,00115 1010,0101,1001,11117 215 & SMOSP of # 4, & closed + C(X)= 1+Qx+0x+1x3=1+x3EC $C'(x) = |+x + x^3 = |+|x + 0x^2 + |x^3|$ be not in list &e

The generator polynomial of a cyclic code

Theorem

Fix a positive integer n, and let $\mathcal C$ be a nonzero cyclic code of length n, i.e., let $\mathcal C$ be a nonzero ideal of $\overline{R} = \mathbf F_2[x]/(x^n-1)$. Then $\mathcal C$ is principal, or in other words, $\mathcal C = (g(x))$ for some $g(x) \in \mathbf F_2[x]$. Moreover, we can choose g(x) so that g(x) divides x^n-1 .

Definition

Let \mathcal{C} be a cyclic code of length n. We define the **generator polynomial** of \mathcal{C} to be the minimal polynomial g(x) of \mathcal{C} .

Again, we always assume that g(x) is a divisor of $x^n - 1$.

The generator matrix of a cyclic code

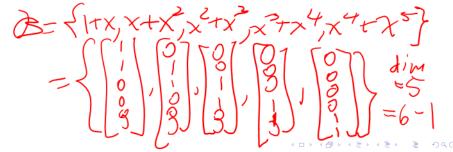
Theorem

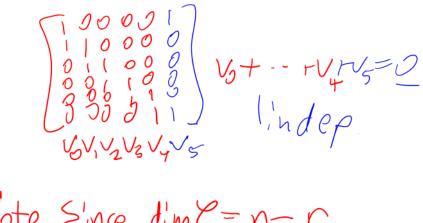
Let C be a cyclic code of length n generated by the divisor $g(x) \in \mathbf{F}_2[x]$ of $x^n - 1$. If $\deg g(x) \neq r$, then the set

$$\mathcal{B} = \left\{ g(x), xg(x), \dots, x^{(n-1)-r}g(x) \right\}$$

is a basis for C. Consequently, the dimension of C is k = n - r.

Example: Let C be the cyclic code of length 6 generated by (1+x), which divides x^6-1 (since -1=+1). The theorem says:





Note Since dim &= n-r, where r=deg(g(x)), want degg as small as possible (more data)

Generator matrix of a cyclic code (proof)

Linear indepedence: Generalizes the (1 + x) example: Spanning: See PS09.

The Hamming 7-code as a cyclic code

Consider the cyclic code of length 7 with generator polynomial $1 + x + x^3$.

Generators of cyclic codes: The upshot

Suppose g(x) divides $x^n - 1$ in $\mathbf{F}_2[x]$. Let $\overline{R} = \mathbf{F}_2[x]/(x^n - 1)$.

- ▶ The principal ideal of \overline{R} generated by g(x) defines a cyclic code \mathcal{C} of length n.
- ▶ The set $\{g(x), xg(x), \dots, x^{(n-1)-r}g(x)\}$ is a basis for \mathcal{C} , and so the dimension of \mathcal{C} is k = n r.

Note: Coding and reading correctly received codewords can be done using polynomial multiplication and division, so we'll concentrate on being able to correct errors in principle (i.e., because of having a large minimum distance).

Big and difficult question: How can we compute the minimum distance of a cyclic code C? Or at least, how can we ensure some kind of lower bound for the minimum distance of C?

Answer: Use field extensions of F_2 . (!!!)

What besit mean; #8ex+ of F2?

H8ex+ of F2?

H8= F2[2], 23+0+1=0, 50

Factoring over \mathbf{F}_2 vs. factoring over an extension \mathbf{F}_2 ox

The polynomial $x^3 + x + 1$ is irreducible over \mathbf{F}_2 , but if α is a root of $x^3 + x + 1$ in \mathbf{F}_8 , then

$$(x + \alpha)(x + \alpha^2)(x + \alpha^4). \quad \alpha^4 = \alpha^2 + \alpha^4$$

$$=\chi^3+(\chi+\chi^2+\chi^4)\chi^2$$

$$+(\alpha(\lambda^{2})+\alpha(\lambda^{4})+\alpha(\alpha^{4}))$$

$$=\chi^{3}+0\chi^{2}+(\chi+(-\chi^{3}+\chi+)$$

The BCH Theorem

Let C be a cyclic code of length n generated by the divisor $g(x) \in \mathbf{F}_2[x]$ of $x^n - 1$.

Suppose E is an extension of \mathbf{F}_2 such that for some $\delta \in \mathbf{N}$ and some $\alpha \in E$ with the order of α exactly equal to n, we have that

$$0 = g(\alpha) = g(\alpha^2) = g(\alpha^3) = \dots = g(\alpha^{\delta-1}).$$

Then the minimum distance d of C is at least δ , i.e., $d \geq \delta$.

So we need to find E, α of order n, and g(x) such that $g(\alpha^k) = 0$ for as many consecutive k as possible (error correction) while keeping deg g as low as possible (higher dimension of code).

Example:
$$n = 7$$
, $g(x) = x^3 + x + 1 = (x - x)(x - x^2)(x - x^4)$

So $0 = g(x) = g(x^2)$

So $g(x^2) \neq 0$

So $g(x^2) \neq 0$

The Frobenius automorphism Why we 2 que

Solution to problem above is the following automorphism (!!).

Theorem

Let E be a finite extension of \mathbf{F}_2 , and define a function $\rho: E \to E$ by the formula

$$\rho(\beta) = \beta^2.$$

- 1. If E is a finite extension of \mathbf{F}_2 , then $\beta \in E$ is a root of $x^2 x$ if and only if $\beta \in \mathbf{F}_2$.
- 2. The map ρ is an automorphism of E. Furthermore, ρ fixes exactly the subfield \mathbf{F}_2 ; in other words, for $\beta \in E$, $\rho(\beta) = \beta$ if and only if $\beta \in \mathbf{F}_2$.

Why: See PS08 and text.

Example: The Frobenius automorphism on \mathbf{F}_8

Recall that $\mathbf{F}_8 = \mathbf{F}_2(\alpha)$, where α is a root of $x^3 + x + 1$ (i.e., $\alpha^3 = \alpha + 1$).

$$P(\alpha) = \alpha^{2}$$
 $Q(\alpha) = \alpha^{2}$
 $Q(\alpha) = \alpha^{2} = \alpha^{2} + \alpha$
 $P(\alpha^{4}) = p(\alpha^{2} + \alpha) = p(\alpha^{2}) = p(\alpha)$
 $= \alpha^{2} + \alpha + \alpha^{2} = \alpha$

Alt: α is a primitive element, and therefore has order $| \text{Tex} | = 7 \implies \text{Alt: } \text{Repsoft}$ | Repsoft $| \text{Repsof$

Minimal polynomial of $\beta \in E$

Theorem

Let E be an extension of \mathbf{F}_2 , fix some $\beta \in E$, and let

$$I = \{f(x) \in \mathbf{F}_2[x] \mid f(\beta) = 0\}.$$

Then I is an ideal of $\mathbf{F}_2[x]$, and consequently, I = (m(x)) for some $m(x) \in \mathbf{F}_2[x]$ (the minimal polynomial of β).

Definition

E an extension of \mathbf{F}_2 , $\beta \in E$. Define

$$\beta_n = \rho^n(\beta),$$

e.g., $\beta_3 = \rho(\rho(\rho(\beta)))$. The **Frobenius orbit of** β is the set

$$\{\beta_0=\beta,\beta_1,\beta_2,\dots\}$$
.

Note that since some finite power of ρ is the identity, every Frobenius orbit is finite.

The Orbit Theorem

Let E be an extension of \mathbf{F}_2 , let β be in E^{\times} , and suppose the Frobenius orbit of β is $\{\beta_0,\ldots,\beta_{s-1}\}$, where $\beta_k=\rho^k(\beta)$ and $\rho^s(\beta)=\beta$. Then the minimal polynomial of β over \mathbf{F}_q is

$$m(x) = (x - \beta_0)(x - \beta_1) \dots (x - \beta_{s-1}).$$

Furthermore, if β has order n, then m(x) divides $x^n - 1$.

Why:

- ▶ Because β is a root of m(x), and the Frobenius automorphism preserves zeros, each β_k must be a root of m(x), which means that $(x \beta_k)$ must be a factor of m(x). By the same argument, each of the $(x \beta_k)$ must be a factor of $x^n 1$.
- ightharpoonup Conversely, the above product is invariant under Frobenius, so it must have coefficients in \mathbf{F}_2 .

Examples of minimal polymomials

Example: $E = \mathbf{F}_8$, α primitive root of E, so order of α is: Frob orbot x: {2,22,24}

Min poly oth is mi(x)=(x a)(xx)

Always true: M(x)=F2k7 (x-Example: Let $E = \mathbf{F}_{2048}$, β primitive root of E, so β has order $2047 = 23 \cdot 89$, $\alpha = \beta^{89}$. Order of α is:

The BCH algorithm

- 1. Choose an extension E of \mathbf{F}_2 , $|E| = 2^e$.
- 2. Choose $\alpha \in E$ of order n. Code will have length n.
- 3. Choose a **designed distance** $\delta \in \mathbf{N}$.
- 4. Let $g(x) = \text{lcm}(m_1(x), \dots, m_{\delta-1}(x))$, i.e., remove repetitions of minimal polynomials and take the resulting product.

Let C be the cyclic code of length n generated by g(x). Then

- ▶ Length of C is n.
- Minimum distance $d \ge \delta$. (So guaranteed distance is at least δ , and is sometimes better.)

See text for proof of the last fact (the hard part).

Example: $E = \mathbf{F}_{32}$, α primitive, $\delta = 5, 7$

Example: $E = \mathbf{F}_{256}$, β primitive, $\alpha = \beta^3$, $\delta = 5, 7, 9$