Sample Final Exam Math 127, Fall 2024

1. (12 points) In the following, if you discuss an object, make sure to be clear what ring that object belongs to.

- (a) Let a and d be nonzero integers. Define what it means for d to divide a.
- (b) Let F be a field and let a(x) and d(x) be nonzero polynomials in F[x]. Define what it means for d(x) to divide a(x).
- **2.** (12 points) Let $\omega = e^{2\pi i/9}$.

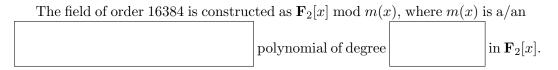
(a) Fill in the blank, no explanation necessary: For $k = 1 + \omega + \omega^2 + \dots + \omega^k = 0$, we have that

(b) For the same value of k you used in part (a), what is the value of

$$1 + \omega^3 + \omega^6 + \dots + \omega^{3k}?$$

Briefly **EXPLAIN** your answer. (Try writing out the full sum and simplifying the exponents on the powers of ω .)

3. (12 points) Note that $16384 = 2^{14}$ (i.e., you are given this fact and do not need to check it). Fill in the blanks, no explanation necessary:



4. (14 points) Let W be the subset of \mathbf{F}_{31}^4 defined by

$$W = \left\{ \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} \in \mathbf{F}_{31}^4 \middle| x_3 = 7x_1 \right\}$$

Give **part of** the proof that W is a subspace of \mathbf{F}_{31}^4 , in the following steps:

- (a) Explain why $\mathbf{0} \in W$.
- (b) Suppose $a \in \mathbf{F}_{31}$ and $\mathbf{x} \in W$. Explain why $a\mathbf{x} \in W$.

5. (14 points) Let \mathbf{F}_{256} be the field of order 256, and let α be a primitive element of \mathbf{F}_{256} .

- (a) What is the order of α ? (No explanation necessary.)
- (b) What is the order of $\beta = \alpha^5$? Briefly **JUSTIFY** your answer.

- 6. (14 points) Suppose $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3 \in \mathbf{F}_5^4$, and let $W = \text{span} \{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$.
- (a) What is the **largest** number of vectors that could be in W, and what condition must $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$ satisfy for W to contain that largest number of vectors?
- (b) Give one example of $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3 \in \mathbf{F}_5^4$ that satisfy the condition in part (a). No explanation necessary.
- 7. (14 points) Consider the subgroup $H = \langle 4 \rangle$ in \mathbf{F}_{17}^{\times} . In the following, show all your work.
- (a) List all of the elements of H (the powers of 4 (mod 17)).
- (b) Write \mathbf{F}_{17}^{\times} as a disjoint union of cosets of H.
- (c) Find a transversal for H in \mathbf{F}_{17}^{\times} .

8. (14 points) Solve 115x = 2 in $\mathbb{Z}/(142)$, or explain why no solution is possible. Show all your work and **JUSTIFY** your answer.

9. (14 points) Let a = 108 and b = 75. Find $x, y \in \mathbb{Z}$ such that $ax + by = \gcd(a, b)$. Show all your work.

10. (14 points) Recall that the parity check matrix of the Hamming 7-code \mathcal{H}_7 is

$$H_7 = \begin{bmatrix} 1 & 0 & 1 & 0 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 & 1 & 1 \end{bmatrix}.$$

Suppose Yolanda is receiving transmissions sent using the Hamming 7-code, and she receives

 $\mathbf{y} = \begin{bmatrix} 0\\0\\0\\1\\0\\1 \end{bmatrix}$. Correct \mathbf{y} to a codeword \mathbf{y}' , if necessary, and read off the message bits 3, 5, 6,

and 7 to find the intended message \mathbf{m}' . Show all your work.

11. (14 points) Note that in $\mathbf{F}_2[x]$, we have

$$x^{5} + x^{3} + 1 = (x)(x^{4} + x + 1) + (x^{3} + x^{2} + x + 1)$$
$$x^{4} + x + 1 = (x + 1)(x^{3} + x^{2} + x + 1) + x$$
$$x^{3} + x^{2} + x + 1 = (x^{2} + x + 1)(x) + 1$$

(I.e., you are given the above facts and do not need to check them yourself.)

Let $\mathbf{F}_{32} = \mathbf{F}_2[\alpha]$, where α is a root of $x^5 + x^3 + 1$. Find the multiplicative inverse of $\beta = \alpha^4 + \alpha + 1$. Show all your work.

12. (14 points) Let A be a matrix with entries in \mathbf{F}_7 such that

	$\begin{bmatrix} 4 & 2 & 2 & 6 & 5 & 3 & 2 \end{bmatrix}$	$\begin{bmatrix} 1 & 4 & 0 & 0 & 3 & 0 & 4 \end{bmatrix}$
	4 2 3 5 1 4 2	$0 \ 0 \ 1 \ 0 \ 4 \ 0 \ 3$
A =	5 6 4 4 0 2 0,	$RREF(A) = \begin{bmatrix} 0 & 0 & 0 & 1 & 1 & 0 & 5 \end{bmatrix}$.
	$\begin{bmatrix} 1 & 4 & 6 & 2 & 1 & 0 & 4 \end{bmatrix}$	0 0 0 0 0 1 2
	$\begin{bmatrix} 1 & 4 & 3 & 3 & 4 & 1 & 2 \end{bmatrix}$	

Find bases for $\operatorname{Col}(A)$ and $\operatorname{Null}(A)$. Show your work.

13. (14 points) Let $E = \mathbf{F}_{512}$, let β be a primitive element of E, and let $\alpha = \beta^7$. Note that the order of α is 73 (i.e., you are given this fact and do not need to check it or justify it). Let C be the BCH code based on α with designed distance $\delta = 9$ over \mathbf{F}_2 . In the following, show all your work, especially your orbit calculations.

- (a) Recall that $m_i(x)$ is the minimal polynomial of α^i . Express $m_1(x)$ as a product of terms of the form $(x \alpha^j)$.
- (b) Find the generating polynomial g(x) of C, expressed as a product of minimal polynomials $m_i(x)$. (You do not need to expand each $m_i(x)$ as a product of terms of the form $(x \alpha^j)$, other than the expansion of $m_1(x)$ that you have already done in part (a).)
- (c) Find $k = \dim \mathcal{C}$.

14. (24 points) Fix N = 24 and $\omega = e^{2\pi i/24}$. Let $H_0 = C_1$, $H_1 = C_2$, $H_2 = C_4$, $H_3 = C_{12}$, and $H_4 = C_{24}$. Recall that the main loop of the FFT based on $C_1 \leq C_2 \leq C_4 \leq C_{12} \leq C_{24}$,

applied to the initial input $\mathbf{x} = \begin{bmatrix} f(0) \\ \vdots \\ f(N-1) \end{bmatrix}$, can be described as follows. For i = 1 to 4:

• Set $H_{i-1} = \langle \omega^m \rangle$, $H_i = \langle \omega^k \rangle$, and d = m/k.

• Subgroup fill: For
$$j = 0$$
 to $(N/k) - 1$, set $y(jk) = \sum_{r=0}^{d-1} x(jm + kr)\omega^{-rkj}$.

- Translate the subgroup fill to cosets of H_i , set $\mathbf{x} = \mathbf{y}$, and loop.
- (a) Working in terms of ω , write out the elements of H_2 and H_3 and write out the elements of the standard transversal $T_{2,3}$ for H_2 in H_3 .
- (b) Write out the results of the "subgroup fill" part of step 3 (i = 3). That is, for all t corresponding to the elements of H_3 , write out the formula for y(t) in terms of the inputs **x** (the output of step 2, i = 2).
- (c) Draw the corresponding subgroup subdiagram for step 3 (i = 3).