## Sample Exam 1 Math 127, Fall 2024

- 1. (12 points) Briefly explain how you can be sure that -2 is **not** a quadratic residue mod 7. Show all your work (if any).
- **2.** (12 points) Let f(x), g(x) be polynomials in R[x] for some coefficient ring R.
- (a) Give an example of a coefficient ring R and nonzero f(x), g(x) such that f(x)g(x) = 0. No explanation necessary.
- (b) Now suppose R has the Zero Factor Property, and h(x) = f(x)g(x). What can you say about deg h(x)? No explanation necessary.
- **3.** (12 points)
- (a) Find the smallest positive integer n such that  $4^n = 1$  in  $\mathbb{Z}/(13)$ . Show all your work.
- (b) Is 4 primitive mod 13? Briefly (1 or 2 sentences) **EXPLAIN** your answer in terms of the definition of primitive.
- **4.** (12 points) Use the Signed Euclidean Algorithm to find gcd(213, 135). Show all your work. (If you don't know/remember how to use the Signed Euclidean Algorithm, you can use the unsigned Euclidean Algorithm for partial credit.)
- **5.** (13 points) Use the Euclidean Algorithm to find  $gcd(x^7 + x^3 + x^2 + x, x^5 + x^2)$  in  $\mathbf{F}_2[x]$ . Show all your work.
- **6.** (13 points) Use the Euclidean Algorithm to find the multiplicative inverse of 28 in  $\mathbb{Z}/(103)$ . Show all your work.
- 7. (13 points) Consider the following (silly) definition. (Assume all matrices have real number entries.)

To **schmultiply** a matrix A by a column vector  $\begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix}$ , do the following: Multiply each entry of A by  $x_1$ ; then multiply each entry of A by  $x_2$ ; and so on, all the way through  $x_n$ .

- (a) What is the result of schmultiplying the matrix  $\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix}$  by the column vector  $\begin{bmatrix} a \\ b \\ c \end{bmatrix}$ ?
- (b) Given a big-O estimate of the number of (real number) multiplications needed to schmultiply an  $n \times n$  matrix A by a column vector  $\begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix}$ . Express your answer in the form  $O(n^k)$  for some integer k, and **EXPLAIN** your answer in a few sentences.
- **8.** (13 points) For  $a \in \mathbf{Z}$ , use the definition of "divides" (and not other results from the homework, etc.) to prove that if 7 divides a and 21 divides b, then 7 divides 5a + 9b.