Sample Exam 3
 Math 127, Fall 2023

1. (10 points) Let $I=\left(x^{2}+1\right)$ be the principal ideal of $R=\mathbf{F}_{2}[x]$ generated by $x^{2}+1$. Find some $f(x) \in I$ such that $\operatorname{deg} f(x) \geq 3$, and briefly EXPLAIN how you know that $f(x) \in I$. (If you don't know how to find $f(x)$, you may recite the definition of ideal for partial credit.)
2. (10 points) Let $\mathbf{F}_{128}=\mathbf{F}_{2}[\alpha]$, where α is a root of $x^{7}+x^{3}+1$. Let $\beta=\alpha^{3}+\alpha^{2}+1$ and $\gamma=\alpha^{4}+\alpha$.
(a) Fill in the blanks: An element of \mathbf{F}_{128} in reduced form is a polynomial in the variable
\square of degree at most \square.
(b) Find a reduced representative for $\beta \gamma$. Show all your work.
3. (10 points) Let \mathbf{F}_{16} be a field of order 16. Give an example of a ring of order 16 that is not isomorphic to \mathbf{F}_{16}. Briefly JUSTIFY your answer.
4. (12 points) Let \mathbf{F}_{2048} be the field of order 2048, and let $\mathbf{F}_{2048}^{\times}$be the multiplicative group of \mathbf{F}_{2048}. Note the prime factorizations $2048=2^{11}$ and $2047=23 \cdot 89$.
(a) What are the possible orders of elements of $\mathbf{F}_{2048}^{\times}$?
(b) For a given $\alpha \in \mathbf{F}_{2048}^{\times}$, what is the smallest set of powers of α that we need to compute to see if α is primitive? Briefly EXPLAIN your answer, referring to part (a).
5. (12 points) Let \mathbf{F}_{64} be the field of order $64=2^{6}$, and let \mathbf{F}_{64}^{\times}be the multiplicative group of \mathbf{F}_{64}.
(a) Let α be a primitive element of \mathbf{F}_{64}. What is the order of α ? Briefly EXPLAIN your answer.
(b) Exactly one of the following is true.

- There exists an element $\beta \in \mathbf{F}_{64}^{\times}$of order 3 .
- There exists an element $\beta \in \mathbf{F}_{64}^{\times}$of order 4 .

Circle the true statement and explain how to find such an element β in terms of the primitive element α.
6. (14 points) Let α be a primitive element of \mathbf{F}_{256}. Find the minimal polynomial $m(x)$ of α^{5} over \mathbf{F}_{2}, expressed as a product of terms of the form $\left(x-\alpha^{i}\right)$. Show all your work.
7. (14 points) Note that in $\mathbf{F}_{2}[x]$, we have

$$
\begin{aligned}
x^{5}+x^{2}+1 & =\left(x^{2}+1\right)\left(x^{3}+x\right)+\left(x^{2}+x+1\right) \\
x^{3}+x & =(x+1)\left(x^{2}+x+1\right)+(x+1) \\
x^{2}+x+1 & =(x)(x+1)+1
\end{aligned}
$$

(I.e., you are given the above facts and do not need to check them yourself.)

Let $\mathbf{F}_{32}=\mathbf{F}_{2}[\alpha]$, where α is a root of $x^{5}+x^{2}+1$. Find the multiplicative inverse of $\beta=\alpha^{3}+\alpha$. Show all your work.
8. (18 points) Let $E=\mathbf{F}_{512}$, let β be a primitive element of E, and let $\alpha=\beta^{7}$. Note that the order of α is 73 (i.e., you are given this fact and do not need to check it or justify it). Let \mathcal{C} be the BCH code given by E, α, and $\delta=5$ over \mathbf{F}_{2}.
(a) Find the generating polynomial $g(x)$ of \mathcal{C}, expressed as a product of minimal polynomials $m_{i}(x)$, where $m_{i}(x)$ is the minimal polynomial of α^{i}. (You do not need to expand each $m_{i}(x)$ as a product of terms of the form $\left(x-\alpha^{j}\right)$.) Show all your work, especially your orbit calculations.
(b) Find $k=\operatorname{dim} \mathcal{C}$.

